cuda-samples/Samples/6_Performance/transpose/transpose.cu
2022-01-13 11:35:24 +05:30

614 lines
20 KiB
Plaintext

/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// -----------------------------------------------------------------------------
// Transpose
//
// This file contains both device and host code for transposing a floating-point
// matrix. It performs several transpose kernels, which incrementally improve
// performance through coalescing, removing shared memory bank conflicts, and
// eliminating partition camping. Several of the kernels perform a copy, used
// to represent the best case performance that a transpose can achieve.
//
// Please see the whitepaper in the docs folder of the transpose project for a
// detailed description of this performance study.
// -----------------------------------------------------------------------------
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// Utilities and system includes
#include <helper_string.h> // helper for string parsing
#include <helper_image.h> // helper for image and data comparison
#include <helper_cuda.h> // helper for cuda error checking functions
const char *sSDKsample = "Transpose";
// Each block transposes/copies a tile of TILE_DIM x TILE_DIM elements
// using TILE_DIM x BLOCK_ROWS threads, so that each thread transposes
// TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of
// BLOCK_ROWS
#define TILE_DIM 16
#define BLOCK_ROWS 16
// This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y
int MATRIX_SIZE_X = 1024;
int MATRIX_SIZE_Y = 1024;
int MUL_FACTOR = TILE_DIM;
#define FLOOR(a, b) (a - (a % b))
// Compute the tile size necessary to illustrate performance cases for SM20+
// hardware
int MAX_TILES = (FLOOR(MATRIX_SIZE_X, 512) * FLOOR(MATRIX_SIZE_Y, 512)) /
(TILE_DIM * TILE_DIM);
// Number of repetitions used for timing. Two sets of repetitions are
// performed: 1) over kernel launches and 2) inside the kernel over just the
// loads and stores
#define NUM_REPS 100
// -------------------------------------------------------
// Copies
// width and height must be integral multiples of TILE_DIM
// -------------------------------------------------------
__global__ void copy(float *odata, float *idata, int width, int height) {
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width * yIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index + i * width] = idata[index + i * width];
}
}
__global__ void copySharedMem(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width * yIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
if (xIndex < width && yIndex < height) {
tile[threadIdx.y][threadIdx.x] = idata[index];
}
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
if (xIndex < height && yIndex < width) {
odata[index] = tile[threadIdx.y][threadIdx.x];
}
}
}
// -------------------------------------------------------
// Transposes
// width and height must be integral multiples of TILE_DIM
// -------------------------------------------------------
__global__ void transposeNaive(float *odata, float *idata, int width,
int height) {
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i] = idata[index_in + i * width];
}
}
// coalesced transpose (with bank conflicts)
__global__ void transposeCoalesced(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// Coalesced transpose with no bank conflicts
__global__ void transposeNoBankConflicts(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// Transpose that effectively reorders execution of thread blocks along
// diagonals of the matrix (also coalesced and has no bank conflicts)
//
// Here blockIdx.x is interpreted as the distance along a diagonal and
// blockIdx.y as corresponding to different diagonals
//
// blockIdx_x and blockIdx_y expressions map the diagonal coordinates to the
// more commonly used cartesian coordinates so that the only changes to the code
// from the coalesced version are the calculation of the blockIdx_x and
// blockIdx_y and replacement of blockIdx.x and bloclIdx.y with the subscripted
// versions in the remaining code
__global__ void transposeDiagonal(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
int blockIdx_x, blockIdx_y;
// do diagonal reordering
if (width == height) {
blockIdx_y = blockIdx.x;
blockIdx_x = (blockIdx.x + blockIdx.y) % gridDim.x;
} else {
int bid = blockIdx.x + gridDim.x * blockIdx.y;
blockIdx_y = bid % gridDim.y;
blockIdx_x = ((bid / gridDim.y) + blockIdx_y) % gridDim.x;
}
// from here on the code is same as previous kernel except blockIdx_x replaces
// blockIdx.x and similarly for y
int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx_y * TILE_DIM + threadIdx.x;
yIndex = blockIdx_x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// --------------------------------------------------------------------
// Partial transposes
// NB: the coarse- and fine-grained routines only perform part of a
// transpose and will fail the test against the reference solution
//
// They are used to assess performance characteristics of different
// components of a full transpose
// --------------------------------------------------------------------
__global__ void transposeFineGrained(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float block[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + (yIndex)*width;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
block[threadIdx.y + i][threadIdx.x] = idata[index + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index + i * height] = block[threadIdx.x][threadIdx.y + i];
}
}
__global__ void transposeCoarseGrained(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float block[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
block[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = block[threadIdx.y + i][threadIdx.x];
}
}
// ---------------------
// host utility routines
// ---------------------
void computeTransposeGold(float *gold, float *idata, const int size_x,
const int size_y) {
for (int y = 0; y < size_y; ++y) {
for (int x = 0; x < size_x; ++x) {
gold[(x * size_y) + y] = idata[(y * size_x) + x];
}
}
}
void getParams(int argc, char **argv, cudaDeviceProp &deviceProp, int &size_x,
int &size_y, int max_tile_dim) {
// set matrix size (if (x,y) dim of matrix is not square, then this will have
// to be modified
if (checkCmdLineFlag(argc, (const char **)argv, "dimX")) {
size_x = getCmdLineArgumentInt(argc, (const char **)argv, "dimX");
if (size_x > max_tile_dim) {
printf("> MatrixSize X = %d is greater than the recommended size = %d\n",
size_x, max_tile_dim);
} else {
printf("> MatrixSize X = %d\n", size_x);
}
} else {
size_x = max_tile_dim;
size_x = FLOOR(size_x, 512);
}
if (checkCmdLineFlag(argc, (const char **)argv, "dimY")) {
size_y = getCmdLineArgumentInt(argc, (const char **)argv, "dimY");
if (size_y > max_tile_dim) {
printf("> MatrixSize Y = %d is greater than the recommended size = %d\n",
size_y, max_tile_dim);
} else {
printf("> MatrixSize Y = %d\n", size_y);
}
} else {
size_y = max_tile_dim;
size_y = FLOOR(size_y, 512);
}
}
void showHelp() {
printf("\n%s : Command line options\n", sSDKsample);
printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n");
printf("> The default matrix size can be overridden with these parameters\n");
printf("\t-dimX=row_dim_size (matrix row dimensions)\n");
printf("\t-dimY=col_dim_size (matrix column dimensions)\n");
}
// ----
// main
// ----
int main(int argc, char **argv) {
// Start logs
printf("%s Starting...\n\n", sSDKsample);
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
showHelp();
return 0;
}
int devID = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
// get number of SMs on this GPU
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// compute the scaling factor (for GPUs with fewer MPs)
float scale_factor, total_tiles;
scale_factor =
max((192.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
(float)deviceProp.multiProcessorCount)),
1.0f);
printf("> Device %d: \"%s\"\n", devID, deviceProp.name);
printf("> SM Capability %d.%d detected:\n", deviceProp.major,
deviceProp.minor);
// Calculate number of tiles we will run for the Matrix Transpose performance
// tests
int size_x, size_y, max_matrix_dim, matrix_size_test;
matrix_size_test = 512; // we round down max_matrix_dim for this perf test
total_tiles = (float)MAX_TILES / scale_factor;
max_matrix_dim =
FLOOR((int)(floor(sqrt(total_tiles)) * TILE_DIM), matrix_size_test);
// This is the minimum size allowed
if (max_matrix_dim == 0) {
max_matrix_dim = matrix_size_test;
}
printf("> [%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name,
deviceProp.multiProcessorCount,
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount);
printf("> Compute performance scaling factor = %4.2f\n", scale_factor);
// Extract parameters if there are any, command line -dimx and -dimy can
// override any of these settings
getParams(argc, argv, deviceProp, size_x, size_y, max_matrix_dim);
if (size_x != size_y) {
printf(
"\n[%s] does not support non-square matrices (row_dim_size(%d) != "
"col_dim_size(%d))\nExiting...\n\n",
sSDKsample, size_x, size_y);
exit(EXIT_FAILURE);
}
if (size_x % TILE_DIM != 0 || size_y % TILE_DIM != 0) {
printf(
"[%s] Matrix size must be integral multiple of tile "
"size\nExiting...\n\n",
sSDKsample);
exit(EXIT_FAILURE);
}
// kernel pointer and descriptor
void (*kernel)(float *, float *, int, int);
const char *kernelName;
// execution configuration parameters
dim3 grid(size_x / TILE_DIM, size_y / TILE_DIM),
threads(TILE_DIM, BLOCK_ROWS);
if (grid.x < 1 || grid.y < 1) {
printf("[%s] grid size computation incorrect in test \nExiting...\n\n",
sSDKsample);
exit(EXIT_FAILURE);
}
// CUDA events
cudaEvent_t start, stop;
// size of memory required to store the matrix
size_t mem_size = static_cast<size_t>(sizeof(float) * size_x * size_y);
if (2 * mem_size > deviceProp.totalGlobalMem) {
printf("Input matrix size is larger than the available device memory!\n");
printf("Please choose a smaller size matrix\n");
exit(EXIT_FAILURE);
}
// allocate host memory
float *h_idata = (float *)malloc(mem_size);
float *h_odata = (float *)malloc(mem_size);
float *transposeGold = (float *)malloc(mem_size);
float *gold;
// allocate device memory
float *d_idata, *d_odata;
checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size));
checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size));
// initialize host data
for (int i = 0; i < (size_x * size_y); ++i) {
h_idata[i] = (float)i;
}
// copy host data to device
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice));
// Compute reference transpose solution
computeTransposeGold(transposeGold, h_idata, size_x, size_y);
// print out common data for all kernels
printf(
"\nMatrix size: %dx%d (%dx%d tiles), tile size: %dx%d, block size: "
"%dx%d\n\n",
size_x, size_y, size_x / TILE_DIM, size_y / TILE_DIM, TILE_DIM, TILE_DIM,
TILE_DIM, BLOCK_ROWS);
// initialize events
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
//
// loop over different kernels
//
bool success = true;
for (int k = 0; k < 8; k++) {
// set kernel pointer
switch (k) {
case 0:
kernel = &copy;
kernelName = "simple copy ";
break;
case 1:
kernel = &copySharedMem;
kernelName = "shared memory copy";
break;
case 2:
kernel = &transposeNaive;
kernelName = "naive ";
break;
case 3:
kernel = &transposeCoalesced;
kernelName = "coalesced ";
break;
case 4:
kernel = &transposeNoBankConflicts;
kernelName = "optimized ";
break;
case 5:
kernel = &transposeCoarseGrained;
kernelName = "coarse-grained ";
break;
case 6:
kernel = &transposeFineGrained;
kernelName = "fine-grained ";
break;
case 7:
kernel = &transposeDiagonal;
kernelName = "diagonal ";
break;
}
// set reference solution
if (kernel == &copy || kernel == &copySharedMem) {
gold = h_idata;
} else if (kernel == &transposeCoarseGrained ||
kernel == &transposeFineGrained) {
gold = h_odata; // fine- and coarse-grained kernels are not full
// transposes, so bypass check
} else {
gold = transposeGold;
}
// Clear error status
checkCudaErrors(cudaGetLastError());
// warmup to avoid timing startup
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
// take measurements for loop over kernel launches
checkCudaErrors(cudaEventRecord(start, 0));
for (int i = 0; i < NUM_REPS; i++) {
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
// Ensure no launch failure
checkCudaErrors(cudaGetLastError());
}
checkCudaErrors(cudaEventRecord(stop, 0));
checkCudaErrors(cudaEventSynchronize(stop));
float kernelTime;
checkCudaErrors(cudaEventElapsedTime(&kernelTime, start, stop));
checkCudaErrors(
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
bool res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
if (res == false) {
printf("*** %s kernel FAILED ***\n", kernelName);
success = false;
}
// take measurements for loop inside kernel
checkCudaErrors(
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
if (res == false) {
printf("*** %s kernel FAILED ***\n", kernelName);
success = false;
}
// report effective bandwidths
float kernelBandwidth = 2.0f * 1000.0f * mem_size / (1024 * 1024 * 1024) /
(kernelTime / NUM_REPS);
printf(
"transpose %s, Throughput = %.4f GB/s, Time = %.5f ms, Size = %u fp32 "
"elements, NumDevsUsed = %u, Workgroup = %u\n",
kernelName, kernelBandwidth, kernelTime / NUM_REPS, (size_x * size_y),
1, TILE_DIM * BLOCK_ROWS);
}
// cleanup
free(h_idata);
free(h_odata);
free(transposeGold);
cudaFree(d_idata);
cudaFree(d_odata);
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
if (!success) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}