mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:15:55 +08:00
198 lines
7.9 KiB
Plaintext
198 lines
7.9 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
//
|
|
// This sample uses the compressible memory allocation if device supports it
|
|
// and performs saxpy on it.
|
|
// Compressible memory may give better performance if the data is amenable to
|
|
// compression.
|
|
|
|
#include <stdio.h>
|
|
#include <cuda.h>
|
|
#define CUDA_DRIVER_API
|
|
#include "helper_cuda.h"
|
|
#include "compMalloc.h"
|
|
|
|
__global__ void saxpy(const float a, const float4 *x, const float4 *y, float4 *z, const size_t n)
|
|
{
|
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += gridDim.x * blockDim.x)
|
|
{
|
|
const float4 x4 = x[i];
|
|
const float4 y4 = y[i];
|
|
z[i] = make_float4(a * x4.x + y4.x, a * x4.y + y4.y,
|
|
a * x4.z + y4.z, a * x4.w + y4.w);
|
|
}
|
|
}
|
|
|
|
__global__ void init(float4 *x, float4 *y, const float val, const size_t n)
|
|
{
|
|
const float4 val4 = make_float4(val, val, val, val);
|
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += gridDim.x * blockDim.x)
|
|
{
|
|
x[i] = y[i] = val4;
|
|
}
|
|
}
|
|
|
|
void launchSaxpy(const float a, float4 *x, float4 *y, float4 *z, const size_t n, const float init_val, const bool compressibleZbuf)
|
|
{
|
|
cudaEvent_t start, stop;
|
|
float ms;
|
|
int blockSize;
|
|
int minGridSize;
|
|
dim3 threads, blocks;
|
|
|
|
if (!compressibleZbuf)
|
|
{
|
|
// We are on config where compressible buffer can only be initialized through cudaMemcpy
|
|
// hence, x & y buffers are allocated as compressible and initialized via cudaMemcpy
|
|
// whereas z buffer is allocated as non-compressible.
|
|
float4 *h_x = (float4 *) malloc(sizeof(float4) * n);
|
|
float4 *h_y = (float4 *) malloc(sizeof(float4) * n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
h_x[i].x = h_x[i].y = h_x[i].z = h_x[i].w = init_val;
|
|
h_y[i].x = h_y[i].y = h_y[i].z = h_y[i].w = init_val;
|
|
}
|
|
checkCudaErrors(cudaMemcpy(x, h_x, sizeof(float4) * n, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(y, h_y, sizeof(float4) * n, cudaMemcpyHostToDevice));
|
|
free(h_x);
|
|
free(h_y);
|
|
}
|
|
else
|
|
{
|
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, (void*)init));
|
|
threads = dim3(blockSize, 1, 1);
|
|
blocks = dim3(minGridSize, 1, 1);
|
|
init<<<blocks, threads>>>(x, y, init_val, n);
|
|
}
|
|
|
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, (void*)saxpy));
|
|
threads = dim3(blockSize, 1, 1);
|
|
blocks = dim3(minGridSize, 1, 1);
|
|
|
|
checkCudaErrors(cudaEventCreate(&start));
|
|
checkCudaErrors(cudaEventCreate(&stop));
|
|
checkCudaErrors(cudaEventRecord(start));
|
|
saxpy<<<blocks, threads>>>(a, x, y, z, n);
|
|
checkCudaErrors(cudaEventRecord(stop));
|
|
checkCudaErrors(cudaEventSynchronize(stop));
|
|
checkCudaErrors(cudaEventElapsedTime(&ms, start, stop));
|
|
|
|
const size_t size = n * sizeof(float4);
|
|
printf("Running saxpy with %d blocks x %d threads = %.3f ms %.3f TB/s\n", blocks.x, threads.x, ms, (size*3)/ms/1e9);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
const size_t n = 10485760;
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
|
|
checkCmdLineFlag(argc, (const char **)argv, "?")) {
|
|
printf("Usage -device=n (n >= 0 for deviceID)\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
findCudaDevice(argc, (const char**)argv);
|
|
CUdevice currentDevice;
|
|
checkCudaErrors(cuCtxGetDevice(¤tDevice));
|
|
|
|
// Check that the selected device supports virtual memory management
|
|
int vmm_supported = -1;
|
|
checkCudaErrors(cuDeviceGetAttribute(&vmm_supported,
|
|
CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
|
|
currentDevice));
|
|
if (vmm_supported == 0) {
|
|
printf("Device %d doesn't support Virtual Memory Management, waiving the execution.\n", currentDevice);
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int isCompressionAvailable;
|
|
checkCudaErrors(cuDeviceGetAttribute(&isCompressionAvailable,
|
|
CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED,
|
|
currentDevice));
|
|
if (isCompressionAvailable == 0)
|
|
{
|
|
printf("Device %d doesn't support Generic memory compression, waiving the execution.\n", currentDevice);
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
printf("Generic memory compression support is available\n");
|
|
|
|
int major, minor;
|
|
checkCudaErrors(cuDeviceGetAttribute(&major,
|
|
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR,
|
|
currentDevice));
|
|
checkCudaErrors(cuDeviceGetAttribute(&minor,
|
|
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR,
|
|
currentDevice));
|
|
float4 *x, *y, *z;
|
|
const size_t size = n * sizeof(float4);
|
|
|
|
// Allocating compressible memory
|
|
checkCudaErrors(allocateCompressible((void **)&x, size, true));
|
|
checkCudaErrors(allocateCompressible((void **)&y, size, true));
|
|
bool compressibleZbuf = 0;
|
|
if ((major == 8 && minor == 0) || (major == 8 && minor == 6))
|
|
{
|
|
// On SM 8.0 and 8.6 GPUs compressible buffer can only be initialized
|
|
// through cudaMemcpy.
|
|
printf("allocating non-compressible Z buffer\n");
|
|
checkCudaErrors(allocateCompressible((void **)&z, size, false));
|
|
compressibleZbuf = 0;
|
|
}
|
|
else
|
|
{
|
|
checkCudaErrors(allocateCompressible((void **)&z, size, true));
|
|
compressibleZbuf = 1;
|
|
}
|
|
|
|
printf("Running saxpy on %zu bytes of Compressible memory\n", size);
|
|
|
|
const float a = 1.0f;
|
|
const float init_val = 1.0f;
|
|
launchSaxpy(a, x, y, z, n, init_val, compressibleZbuf);
|
|
|
|
checkCudaErrors(freeCompressible(x, size, true));
|
|
checkCudaErrors(freeCompressible(y, size, true));
|
|
checkCudaErrors(freeCompressible(z, size, true));
|
|
|
|
printf("Running saxpy on %zu bytes of Non-Compressible memory\n", size);
|
|
// Allocating non-compressible memory
|
|
checkCudaErrors(allocateCompressible((void **)&x, size, false));
|
|
checkCudaErrors(allocateCompressible((void **)&y, size, false));
|
|
checkCudaErrors(allocateCompressible((void **)&z, size, false));
|
|
|
|
launchSaxpy(a, x, y, z, n, init_val, compressibleZbuf);
|
|
|
|
checkCudaErrors(freeCompressible(x, size, false));
|
|
checkCudaErrors(freeCompressible(y, size, false));
|
|
checkCudaErrors(freeCompressible(z, size, false));
|
|
|
|
printf("\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n");
|
|
return EXIT_SUCCESS;
|
|
} |