mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:15:55 +08:00
561 lines
16 KiB
C++
561 lines
16 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample demonstrates two adaptive image denoising techniques:
|
|
* KNN and NLM, based on computation of both geometric and color distance
|
|
* between texels. While both techniques are already implemented in the
|
|
* DirectX SDK using shaders, massively speeded up variation
|
|
* of the latter technique, taking advantage of shared memory, is implemented
|
|
* in addition to DirectX counterparts.
|
|
* See supplied whitepaper for more explanations.
|
|
*/
|
|
|
|
// OpenGL Graphics includes
|
|
#include <helper_gl.h>
|
|
#if defined(__APPLE__) || defined(MACOSX)
|
|
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
|
#include <GLUT/glut.h>
|
|
#else
|
|
#include <GL/freeglut.h>
|
|
#endif
|
|
|
|
// CUDA utilities and system includes
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_gl_interop.h>
|
|
|
|
// Includes
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "imageDenoising.h"
|
|
|
|
// includes, project
|
|
#include <helper_functions.h> // includes for helper utility functions
|
|
#include <helper_cuda.h> // includes for cuda error checking and initialization
|
|
|
|
const char *sSDKsample = "CUDA ImageDenoising";
|
|
|
|
const char *filterMode[] = {"Passthrough", "KNN method", "NLM method",
|
|
"Quick NLM(NLM2) method", NULL};
|
|
|
|
// Define the files that are to be save and the reference images for validation
|
|
const char *sOriginal[] = {"image_passthru.ppm", "image_knn.ppm",
|
|
"image_nlm.ppm", "image_nlm2.ppm", NULL};
|
|
|
|
const char *sReference[] = {"ref_passthru.ppm", "ref_knn.ppm", "ref_nlm.ppm",
|
|
"ref_nlm2.ppm", NULL};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global data handlers and parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// OpenGL PBO and texture "names"
|
|
GLuint gl_PBO, gl_Tex;
|
|
struct cudaGraphicsResource *cuda_pbo_resource; // handles OpenGL-CUDA exchange
|
|
// Source image on the host side
|
|
uchar4 *h_Src;
|
|
int imageW, imageH;
|
|
GLuint shader;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int g_Kernel = 0;
|
|
bool g_FPS = false;
|
|
bool g_Diag = false;
|
|
StopWatchInterface *timer = NULL;
|
|
|
|
// Algorithms global parameters
|
|
const float noiseStep = 0.025f;
|
|
const float lerpStep = 0.025f;
|
|
static float knnNoise = 0.32f;
|
|
static float nlmNoise = 1.45f;
|
|
static float lerpC = 0.2f;
|
|
|
|
const int frameN = 24;
|
|
int frameCounter = 0;
|
|
|
|
#define BUFFER_DATA(i) ((char *)0 + i)
|
|
|
|
// Auto-Verification Code
|
|
const int frameCheckNumber = 4;
|
|
int fpsCount = 0; // FPS count for averaging
|
|
int fpsLimit = 1; // FPS limit for sampling
|
|
unsigned int frameCount = 0;
|
|
unsigned int g_TotalErrors = 0;
|
|
|
|
int *pArgc = NULL;
|
|
char **pArgv = NULL;
|
|
|
|
#define MAX_EPSILON_ERROR 5
|
|
#define REFRESH_DELAY 10 // ms
|
|
|
|
void cleanup();
|
|
|
|
void computeFPS() {
|
|
frameCount++;
|
|
fpsCount++;
|
|
|
|
if (fpsCount == fpsLimit) {
|
|
char fps[256];
|
|
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
|
|
sprintf(fps, "<%s>: %3.1f fps", filterMode[g_Kernel], ifps);
|
|
|
|
glutSetWindowTitle(fps);
|
|
fpsCount = 0;
|
|
|
|
// fpsLimit = (int)MAX(ifps, 1.f);
|
|
sdkResetTimer(&timer);
|
|
}
|
|
}
|
|
|
|
void runImageFilters(TColor *d_dst) {
|
|
switch (g_Kernel) {
|
|
case 0:
|
|
cuda_Copy(d_dst, imageW, imageH, texImage);
|
|
break;
|
|
|
|
case 1:
|
|
if (!g_Diag) {
|
|
cuda_KNN(d_dst, imageW, imageH, 1.0f / (knnNoise * knnNoise), lerpC,
|
|
texImage);
|
|
} else {
|
|
cuda_KNNdiag(d_dst, imageW, imageH, 1.0f / (knnNoise * knnNoise), lerpC,
|
|
texImage);
|
|
}
|
|
|
|
break;
|
|
|
|
case 2:
|
|
if (!g_Diag) {
|
|
cuda_NLM(d_dst, imageW, imageH, 1.0f / (nlmNoise * nlmNoise), lerpC,
|
|
texImage);
|
|
} else {
|
|
cuda_NLMdiag(d_dst, imageW, imageH, 1.0f / (nlmNoise * nlmNoise), lerpC,
|
|
texImage);
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
if (!g_Diag) {
|
|
cuda_NLM2(d_dst, imageW, imageH, 1.0f / (nlmNoise * nlmNoise), lerpC,
|
|
texImage);
|
|
} else {
|
|
cuda_NLM2diag(d_dst, imageW, imageH, 1.0f / (nlmNoise * nlmNoise),
|
|
lerpC, texImage);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
getLastCudaError("Filtering kernel execution failed.\n");
|
|
}
|
|
|
|
void displayFunc(void) {
|
|
sdkStartTimer(&timer);
|
|
TColor *d_dst = NULL;
|
|
size_t num_bytes;
|
|
|
|
if (frameCounter++ == 0) {
|
|
sdkResetTimer(&timer);
|
|
}
|
|
|
|
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
|
|
getLastCudaError("cudaGraphicsMapResources failed");
|
|
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
|
|
(void **)&d_dst, &num_bytes, cuda_pbo_resource));
|
|
getLastCudaError("cudaGraphicsResourceGetMappedPointer failed");
|
|
|
|
runImageFilters(d_dst);
|
|
|
|
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
|
|
|
|
// Common display code path
|
|
{
|
|
glClear(GL_COLOR_BUFFER_BIT);
|
|
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, imageW, imageH, GL_RGBA,
|
|
GL_UNSIGNED_BYTE, BUFFER_DATA(0));
|
|
glBegin(GL_TRIANGLES);
|
|
glTexCoord2f(0, 0);
|
|
glVertex2f(-1, -1);
|
|
glTexCoord2f(2, 0);
|
|
glVertex2f(+3, -1);
|
|
glTexCoord2f(0, 2);
|
|
glVertex2f(-1, +3);
|
|
glEnd();
|
|
glFinish();
|
|
}
|
|
|
|
if (frameCounter == frameN) {
|
|
frameCounter = 0;
|
|
|
|
if (g_FPS) {
|
|
printf("FPS: %3.1f\n", frameN / (sdkGetTimerValue(&timer) * 0.001));
|
|
g_FPS = false;
|
|
}
|
|
}
|
|
|
|
glutSwapBuffers();
|
|
glutReportErrors();
|
|
|
|
sdkStopTimer(&timer);
|
|
|
|
computeFPS();
|
|
}
|
|
|
|
void timerEvent(int value) {
|
|
if (glutGetWindow()) {
|
|
glutPostRedisplay();
|
|
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);
|
|
}
|
|
}
|
|
|
|
void keyboard(unsigned char k, int /*x*/, int /*y*/) {
|
|
switch (k) {
|
|
case 27:
|
|
case 'q':
|
|
case 'Q':
|
|
#if defined(__APPLE__) || defined(MACOSX)
|
|
exit(EXIT_SUCCESS);
|
|
#else
|
|
glutDestroyWindow(glutGetWindow());
|
|
return;
|
|
#endif
|
|
|
|
case '1':
|
|
printf("Passthrough.\n");
|
|
g_Kernel = 0;
|
|
break;
|
|
|
|
case '2':
|
|
printf("KNN method \n");
|
|
g_Kernel = 1;
|
|
break;
|
|
|
|
case '3':
|
|
printf("NLM method\n");
|
|
g_Kernel = 2;
|
|
break;
|
|
|
|
case '4':
|
|
printf("Quick NLM(NLM2) method\n");
|
|
g_Kernel = 3;
|
|
break;
|
|
|
|
case '*':
|
|
printf(g_Diag ? "LERP highlighting mode.\n" : "Normal mode.\n");
|
|
g_Diag = !g_Diag;
|
|
break;
|
|
|
|
case 'n':
|
|
printf("Decrease noise level.\n");
|
|
knnNoise -= noiseStep;
|
|
nlmNoise -= noiseStep;
|
|
break;
|
|
|
|
case 'N':
|
|
printf("Increase noise level.\n");
|
|
knnNoise += noiseStep;
|
|
nlmNoise += noiseStep;
|
|
break;
|
|
|
|
case 'l':
|
|
printf("Decrease LERP quotient.\n");
|
|
lerpC = MAX(lerpC - lerpStep, 0.0f);
|
|
break;
|
|
|
|
case 'L':
|
|
printf("Increase LERP quotient.\n");
|
|
lerpC = MIN(lerpC + lerpStep, 1.0f);
|
|
break;
|
|
|
|
case 'f':
|
|
case 'F':
|
|
g_FPS = true;
|
|
break;
|
|
|
|
case '?':
|
|
printf("lerpC = %5.5f\n", lerpC);
|
|
printf("knnNoise = %5.5f\n", knnNoise);
|
|
printf("nlmNoise = %5.5f\n", nlmNoise);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int initGL(int *argc, char **argv) {
|
|
printf("Initializing GLUT...\n");
|
|
glutInit(argc, argv);
|
|
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
|
|
glutInitWindowSize(imageW, imageH);
|
|
glutInitWindowPosition(512 - imageW / 2, 384 - imageH / 2);
|
|
glutCreateWindow(argv[0]);
|
|
glutDisplayFunc(displayFunc);
|
|
glutKeyboardFunc(keyboard);
|
|
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);
|
|
printf("OpenGL window created.\n");
|
|
|
|
#if defined(__APPLE__) || defined(MACOSX)
|
|
atexit(cleanup);
|
|
#else
|
|
glutCloseFunc(cleanup);
|
|
#endif
|
|
|
|
if (!isGLVersionSupported(1, 5) ||
|
|
!areGLExtensionsSupported(
|
|
"GL_ARB_vertex_buffer_object GL_ARB_pixel_buffer_object")) {
|
|
fprintf(stderr, "Error: failed to get minimal extensions for demo\n");
|
|
fprintf(stderr, "This sample requires:\n");
|
|
fprintf(stderr, " OpenGL version 1.5\n");
|
|
fprintf(stderr, " GL_ARB_vertex_buffer_object\n");
|
|
fprintf(stderr, " GL_ARB_pixel_buffer_object\n");
|
|
fflush(stderr);
|
|
return false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// shader for displaying floating-point texture
|
|
static const char *shader_code =
|
|
"!!ARBfp1.0\n"
|
|
"TEX result.color, fragment.texcoord, texture[0], 2D; \n"
|
|
"END";
|
|
|
|
GLuint compileASMShader(GLenum program_type, const char *code) {
|
|
GLuint program_id;
|
|
glGenProgramsARB(1, &program_id);
|
|
glBindProgramARB(program_type, program_id);
|
|
glProgramStringARB(program_type, GL_PROGRAM_FORMAT_ASCII_ARB,
|
|
(GLsizei)strlen(code), (GLubyte *)code);
|
|
|
|
GLint error_pos;
|
|
glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &error_pos);
|
|
|
|
if (error_pos != -1) {
|
|
const GLubyte *error_string;
|
|
error_string = glGetString(GL_PROGRAM_ERROR_STRING_ARB);
|
|
fprintf(stderr, "Program error at position: %d\n%s\n", (int)error_pos,
|
|
error_string);
|
|
return 0;
|
|
}
|
|
|
|
return program_id;
|
|
}
|
|
|
|
void initOpenGLBuffers() {
|
|
printf("Creating GL texture...\n");
|
|
glEnable(GL_TEXTURE_2D);
|
|
glGenTextures(1, &gl_Tex);
|
|
glBindTexture(GL_TEXTURE_2D, gl_Tex);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, imageW, imageH, 0, GL_RGBA,
|
|
GL_UNSIGNED_BYTE, h_Src);
|
|
printf("Texture created.\n");
|
|
|
|
printf("Creating PBO...\n");
|
|
glGenBuffers(1, &gl_PBO);
|
|
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, gl_PBO);
|
|
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, imageW * imageH * 4, h_Src,
|
|
GL_STREAM_COPY);
|
|
// While a PBO is registered to CUDA, it can't be used
|
|
// as the destination for OpenGL drawing calls.
|
|
// But in our particular case OpenGL is only used
|
|
// to display the content of the PBO, specified by CUDA kernels,
|
|
// so we need to register/unregister it only once.
|
|
// DEPRECATED: checkCudaErrors(cudaGLRegisterBufferObject(gl_PBO) );
|
|
checkCudaErrors(cudaGraphicsGLRegisterBuffer(
|
|
&cuda_pbo_resource, gl_PBO, cudaGraphicsMapFlagsWriteDiscard));
|
|
GLenum gl_error = glGetError();
|
|
|
|
if (gl_error != GL_NO_ERROR) {
|
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
|
char tmpStr[512];
|
|
// NOTE: "%s(%i) : " allows Visual Studio to directly jump to the file at
|
|
// the right line when the user double clicks on the error line in the
|
|
// Output pane. Like any compile error.
|
|
sprintf_s(tmpStr, 255, "\n%s(%i) : GL Error : %s\n\n", __FILE__, __LINE__,
|
|
gluErrorString(gl_error));
|
|
OutputDebugString(tmpStr);
|
|
#endif
|
|
fprintf(stderr, "GL Error in file '%s' in line %d :\n", __FILE__, __LINE__);
|
|
fprintf(stderr, "%s\n", gluErrorString(gl_error));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("PBO created.\n");
|
|
|
|
// load shader program
|
|
shader = compileASMShader(GL_FRAGMENT_PROGRAM_ARB, shader_code);
|
|
}
|
|
|
|
void cleanup() {
|
|
free(h_Src);
|
|
checkCudaErrors(CUDA_FreeArray());
|
|
checkCudaErrors(cudaGraphicsUnregisterResource(cuda_pbo_resource));
|
|
|
|
glDeleteProgramsARB(1, &shader);
|
|
|
|
sdkDeleteTimer(&timer);
|
|
}
|
|
|
|
void runAutoTest(int argc, char **argv, const char *filename,
|
|
int kernel_param) {
|
|
printf("[%s] - (automated testing w/ readback)\n", sSDKsample);
|
|
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
// First load the image, so we know what the size of the image (imageW and
|
|
// imageH)
|
|
printf("Allocating host and CUDA memory and loading image file...\n");
|
|
const char *image_path = sdkFindFilePath("portrait_noise.bmp", argv[0]);
|
|
|
|
if (image_path == NULL) {
|
|
printf(
|
|
"imageDenoisingGL was unable to find and load image file "
|
|
"<portrait_noise.bmp>.\nExiting...\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
LoadBMPFile(&h_Src, &imageW, &imageH, image_path);
|
|
printf("Data init done.\n");
|
|
|
|
checkCudaErrors(CUDA_MallocArray(&h_Src, imageW, imageH));
|
|
|
|
TColor *d_dst = NULL;
|
|
unsigned char *h_dst = NULL;
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_dst, imageW * imageH * sizeof(TColor)));
|
|
h_dst = (unsigned char *)malloc(imageH * imageW * 4);
|
|
|
|
{
|
|
g_Kernel = kernel_param;
|
|
printf("[AutoTest]: %s <%s>\n", sSDKsample, filterMode[g_Kernel]);
|
|
|
|
runImageFilters(d_dst);
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
checkCudaErrors(cudaMemcpy(h_dst, d_dst, imageW * imageH * sizeof(TColor),
|
|
cudaMemcpyDeviceToHost));
|
|
sdkSavePPM4ub(filename, h_dst, imageW, imageH);
|
|
}
|
|
|
|
checkCudaErrors(CUDA_FreeArray());
|
|
free(h_Src);
|
|
|
|
checkCudaErrors(cudaFree(d_dst));
|
|
free(h_dst);
|
|
|
|
printf("\n[%s] -> Kernel %d, Saved: %s\n", sSDKsample, kernel_param,
|
|
filename);
|
|
|
|
exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
char *dump_file = NULL;
|
|
|
|
#if defined(__linux__)
|
|
setenv("DISPLAY", ":0", 0);
|
|
#endif
|
|
|
|
pArgc = &argc;
|
|
pArgv = argv;
|
|
|
|
printf("%s Starting...\n\n", sSDKsample);
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
|
getCmdLineArgumentString(argc, (const char **)argv, "file",
|
|
(char **)&dump_file);
|
|
|
|
int kernel = 1;
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "kernel")) {
|
|
kernel = getCmdLineArgumentInt(argc, (const char **)argv, "kernel");
|
|
}
|
|
|
|
runAutoTest(argc, argv, dump_file, kernel);
|
|
} else {
|
|
printf("[%s]\n", sSDKsample);
|
|
|
|
// use command-line specified CUDA device, otherwise use device with highest
|
|
// Gflops/s
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "device")) {
|
|
printf("[%s]\n", argv[0]);
|
|
printf(" Does not explicitly support -device=n in OpenGL mode\n");
|
|
printf(" To use -device=n, the sample must be running w/o OpenGL\n\n");
|
|
printf(" > %s -device=n -qatest\n", argv[0]);
|
|
printf("exiting...\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
// First load the image, so we know what the size of the image (imageW and
|
|
// imageH)
|
|
printf("Allocating host and CUDA memory and loading image file...\n");
|
|
const char *image_path = sdkFindFilePath("portrait_noise.bmp", argv[0]);
|
|
|
|
if (image_path == NULL) {
|
|
printf(
|
|
"imageDenoisingGL was unable to find and load image file "
|
|
"<portrait_noise.bmp>.\nExiting...\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
LoadBMPFile(&h_Src, &imageW, &imageH, image_path);
|
|
printf("Data init done.\n");
|
|
|
|
initGL(&argc, argv);
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
checkCudaErrors(CUDA_MallocArray(&h_Src, imageW, imageH));
|
|
|
|
initOpenGLBuffers();
|
|
}
|
|
|
|
printf("Starting GLUT main loop...\n");
|
|
printf("Press [1] to view noisy image\n");
|
|
printf("Press [2] to view image restored with knn filter\n");
|
|
printf("Press [3] to view image restored with nlm filter\n");
|
|
printf("Press [4] to view image restored with modified nlm filter\n");
|
|
printf(
|
|
"Press [*] to view smooth/edgy areas [RED/BLUE] Ct's when a filter is "
|
|
"active\n");
|
|
printf("Press [f] to print frame rate\n");
|
|
printf("Press [?] to print Noise and Lerp Ct's\n");
|
|
printf("Press [q] to exit\n");
|
|
|
|
sdkCreateTimer(&timer);
|
|
sdkStartTimer(&timer);
|
|
|
|
glutMainLoop();
|
|
}
|