mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 23:09:16 +08:00
354 lines
12 KiB
Plaintext
354 lines
12 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* Matrix multiplication: C = A * B.
|
|
* Host code.
|
|
*
|
|
* This sample implements matrix multiplication which makes use of shared memory
|
|
* to ensure data reuse, the matrix multiplication is done using tiling approach.
|
|
* It has been written for clarity of exposition to illustrate various CUDA programming
|
|
* principles, not with the goal of providing the most performant generic kernel for matrix multiplication.
|
|
* See also:
|
|
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
|
|
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08),
|
|
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
|
|
*/
|
|
|
|
// System includes
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_profiler_api.h>
|
|
|
|
// Helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
/**
|
|
* Matrix multiplication (CUDA Kernel) on the device: C = A * B
|
|
* wA is A's width and wB is B's width
|
|
*/
|
|
template <int BLOCK_SIZE> __global__ void MatrixMulCUDA(float *C, float *A,
|
|
float *B, int wA,
|
|
int wB) {
|
|
// Block index
|
|
int bx = blockIdx.x;
|
|
int by = blockIdx.y;
|
|
|
|
// Thread index
|
|
int tx = threadIdx.x;
|
|
int ty = threadIdx.y;
|
|
|
|
// Index of the first sub-matrix of A processed by the block
|
|
int aBegin = wA * BLOCK_SIZE * by;
|
|
|
|
// Index of the last sub-matrix of A processed by the block
|
|
int aEnd = aBegin + wA - 1;
|
|
|
|
// Step size used to iterate through the sub-matrices of A
|
|
int aStep = BLOCK_SIZE;
|
|
|
|
// Index of the first sub-matrix of B processed by the block
|
|
int bBegin = BLOCK_SIZE * bx;
|
|
|
|
// Step size used to iterate through the sub-matrices of B
|
|
int bStep = BLOCK_SIZE * wB;
|
|
|
|
// Csub is used to store the element of the block sub-matrix
|
|
// that is computed by the thread
|
|
float Csub = 0;
|
|
|
|
// Loop over all the sub-matrices of A and B
|
|
// required to compute the block sub-matrix
|
|
for (int a = aBegin, b = bBegin;
|
|
a <= aEnd;
|
|
a += aStep, b += bStep) {
|
|
// Declaration of the shared memory array As used to
|
|
// store the sub-matrix of A
|
|
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
|
|
|
|
// Declaration of the shared memory array Bs used to
|
|
// store the sub-matrix of B
|
|
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
|
|
|
|
// Load the matrices from device memory
|
|
// to shared memory; each thread loads
|
|
// one element of each matrix
|
|
As[ty][tx] = A[a + wA * ty + tx];
|
|
Bs[ty][tx] = B[b + wB * ty + tx];
|
|
|
|
// Synchronize to make sure the matrices are loaded
|
|
__syncthreads();
|
|
|
|
// Multiply the two matrices together;
|
|
// each thread computes one element
|
|
// of the block sub-matrix
|
|
#pragma unroll
|
|
|
|
for (int k = 0; k < BLOCK_SIZE; ++k) {
|
|
Csub += As[ty][k] * Bs[k][tx];
|
|
}
|
|
|
|
// Synchronize to make sure that the preceding
|
|
// computation is done before loading two new
|
|
// sub-matrices of A and B in the next iteration
|
|
__syncthreads();
|
|
}
|
|
|
|
// Write the block sub-matrix to device memory;
|
|
// each thread writes one element
|
|
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
|
|
C[c + wB * ty + tx] = Csub;
|
|
}
|
|
|
|
void ConstantInit(float *data, int size, float val) {
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Run a simple test of matrix multiplication using CUDA
|
|
*/
|
|
int MatrixMultiply(int argc, char **argv,
|
|
int block_size, const dim3 &dimsA,
|
|
const dim3 &dimsB) {
|
|
// Allocate host memory for matrices A and B
|
|
unsigned int size_A = dimsA.x * dimsA.y;
|
|
unsigned int mem_size_A = sizeof(float) * size_A;
|
|
float *h_A;
|
|
checkCudaErrors(cudaMallocHost(&h_A, mem_size_A));
|
|
unsigned int size_B = dimsB.x * dimsB.y;
|
|
unsigned int mem_size_B = sizeof(float) * size_B;
|
|
float *h_B;
|
|
checkCudaErrors(cudaMallocHost(&h_B, mem_size_B));
|
|
cudaStream_t stream;
|
|
|
|
// Initialize host memory
|
|
const float valB = 0.01f;
|
|
ConstantInit(h_A, size_A, 1.0f);
|
|
ConstantInit(h_B, size_B, valB);
|
|
|
|
// Allocate device memory
|
|
float *d_A, *d_B, *d_C;
|
|
|
|
// Allocate host matrix C
|
|
dim3 dimsC(dimsB.x, dimsA.y, 1);
|
|
unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float);
|
|
float *h_C;
|
|
checkCudaErrors(cudaMallocHost(&h_C, mem_size_C));
|
|
|
|
if (h_C == NULL) {
|
|
fprintf(stderr, "Failed to allocate host matrix C!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_A), mem_size_A));
|
|
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_B), mem_size_B));
|
|
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_C), mem_size_C));
|
|
// Allocate CUDA events that we'll use for timing
|
|
cudaEvent_t start, stop;
|
|
checkCudaErrors(cudaEventCreate(&start));
|
|
checkCudaErrors(cudaEventCreate(&stop));
|
|
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
|
|
// copy host memory to device
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice, stream));
|
|
|
|
// Setup execution parameters
|
|
dim3 threads(block_size, block_size);
|
|
dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y);
|
|
|
|
// Create and start timer
|
|
printf("Computing result using CUDA Kernel...\n");
|
|
|
|
// Performs warmup operation using matrixMul CUDA kernel
|
|
if (block_size == 16) {
|
|
MatrixMulCUDA<16>
|
|
<<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x, dimsB.x);
|
|
} else {
|
|
MatrixMulCUDA<32>
|
|
<<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x, dimsB.x);
|
|
}
|
|
|
|
printf("done\n");
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
|
|
// Record the start event
|
|
checkCudaErrors(cudaEventRecord(start, stream));
|
|
|
|
// Execute the kernel
|
|
int nIter = 300;
|
|
|
|
for (int j = 0; j < nIter; j++) {
|
|
if (block_size == 16) {
|
|
MatrixMulCUDA<16>
|
|
<<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x, dimsB.x);
|
|
} else {
|
|
MatrixMulCUDA<32>
|
|
<<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x, dimsB.x);
|
|
}
|
|
}
|
|
|
|
// Record the stop event
|
|
checkCudaErrors(cudaEventRecord(stop, stream));
|
|
|
|
// Wait for the stop event to complete
|
|
checkCudaErrors(cudaEventSynchronize(stop));
|
|
|
|
float msecTotal = 0.0f;
|
|
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop));
|
|
|
|
// Compute and print the performance
|
|
float msecPerMatrixMul = msecTotal / nIter;
|
|
double flopsPerMatrixMul = 2.0 * static_cast<double>(dimsA.x) *
|
|
static_cast<double>(dimsA.y) *
|
|
static_cast<double>(dimsB.x);
|
|
double gigaFlops =
|
|
(flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f);
|
|
printf(
|
|
"Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops,"
|
|
" WorkgroupSize= %u threads/block\n",
|
|
gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y);
|
|
|
|
// Copy result from device to host
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost, stream));
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
|
|
printf("Checking computed result for correctness: ");
|
|
bool correct = true;
|
|
|
|
// test relative error by the formula
|
|
// |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps
|
|
double eps = 1.e-6; // machine zero
|
|
|
|
for (int i = 0; i < static_cast<int>(dimsC.x * dimsC.y); i++) {
|
|
double abs_err = fabs(h_C[i] - (dimsA.x * valB));
|
|
double dot_length = dimsA.x;
|
|
double abs_val = fabs(h_C[i]);
|
|
double rel_err = abs_err / abs_val / dot_length;
|
|
|
|
if (rel_err > eps) {
|
|
printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n",
|
|
i, h_C[i], dimsA.x * valB, eps);
|
|
correct = false;
|
|
}
|
|
}
|
|
|
|
printf("%s\n", correct ? "Result = PASS" : "Result = FAIL");
|
|
|
|
// Clean up memory
|
|
checkCudaErrors(cudaFreeHost(h_A));
|
|
checkCudaErrors(cudaFreeHost(h_B));
|
|
checkCudaErrors(cudaFreeHost(h_C));
|
|
checkCudaErrors(cudaFree(d_A));
|
|
checkCudaErrors(cudaFree(d_B));
|
|
checkCudaErrors(cudaFree(d_C));
|
|
checkCudaErrors(cudaEventDestroy(start));
|
|
checkCudaErrors(cudaEventDestroy(stop));
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance "
|
|
"measurements. Results may vary when GPU Boost is enabled.\n");
|
|
|
|
if (correct) {
|
|
return EXIT_SUCCESS;
|
|
} else {
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Program main
|
|
*/
|
|
int main(int argc, char **argv) {
|
|
printf("[Matrix Multiply Using CUDA] - Starting...\n");
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
|
|
checkCmdLineFlag(argc, (const char **)argv, "?")) {
|
|
printf("Usage -device=n (n >= 0 for deviceID)\n");
|
|
printf(" -wA=WidthA -hA=HeightA (Width x Height of Matrix A)\n");
|
|
printf(" -wB=WidthB -hB=HeightB (Width x Height of Matrix B)\n");
|
|
printf(" Note: Outer matrix dimensions of A & B matrices" \
|
|
" must be equal.\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
// This will pick the best possible CUDA capable device, otherwise
|
|
// override the device ID based on input provided at the command line
|
|
int dev = findCudaDevice(argc, (const char **)argv);
|
|
|
|
int block_size = 32;
|
|
|
|
dim3 dimsA(5 * 2 * block_size, 5 * 2 * block_size, 1);
|
|
dim3 dimsB(5 * 4 * block_size, 5 * 2 * block_size, 1);
|
|
|
|
// width of Matrix A
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "wA")) {
|
|
dimsA.x = getCmdLineArgumentInt(argc, (const char **)argv, "wA");
|
|
}
|
|
|
|
// height of Matrix A
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "hA")) {
|
|
dimsA.y = getCmdLineArgumentInt(argc, (const char **)argv, "hA");
|
|
}
|
|
|
|
// width of Matrix B
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "wB")) {
|
|
dimsB.x = getCmdLineArgumentInt(argc, (const char **)argv, "wB");
|
|
}
|
|
|
|
// height of Matrix B
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "hB")) {
|
|
dimsB.y = getCmdLineArgumentInt(argc, (const char **)argv, "hB");
|
|
}
|
|
|
|
if (dimsA.x != dimsB.y) {
|
|
printf("Error: outer matrix dimensions must be equal. (%d != %d)\n",
|
|
dimsA.x, dimsB.y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y,
|
|
dimsB.x, dimsB.y);
|
|
|
|
checkCudaErrors(cudaProfilerStart());
|
|
int matrix_result = MatrixMultiply(argc, argv, block_size, dimsA, dimsB);
|
|
checkCudaErrors(cudaProfilerStop());
|
|
|
|
exit(matrix_result);
|
|
}
|