mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 19:15:50 +08:00
467 lines
15 KiB
Plaintext
467 lines
15 KiB
Plaintext
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
/*
|
|
* This sample implements a conjugate gradient solver on GPU
|
|
* using CUBLAS and CUSPARSE with CUDA Graphs
|
|
*
|
|
*/
|
|
|
|
// includes, system
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Using updated (v2) interfaces to cublas */
|
|
#include <cublas_v2.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cusparse.h>
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
// Utilities and system includes
|
|
#include <helper_cuda.h> // helper function CUDA error checking and initialization
|
|
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
const char *sSDKname = "conjugateGradientCudaGraphs";
|
|
|
|
#ifndef WITH_GRAPH
|
|
#define WITH_GRAPH 1
|
|
#endif
|
|
|
|
/* genTridiag: generate a random tridiagonal symmetric matrix */
|
|
void genTridiag(int *I, int *J, float *val, int N, int nz) {
|
|
I[0] = 0, J[0] = 0, J[1] = 1;
|
|
val[0] = (float)rand() / RAND_MAX + 10.0f;
|
|
val[1] = (float)rand() / RAND_MAX;
|
|
int start;
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
if (i > 1) {
|
|
I[i] = I[i - 1] + 3;
|
|
} else {
|
|
I[1] = 2;
|
|
}
|
|
|
|
start = (i - 1) * 3 + 2;
|
|
J[start] = i - 1;
|
|
J[start + 1] = i;
|
|
|
|
if (i < N - 1) {
|
|
J[start + 2] = i + 1;
|
|
}
|
|
|
|
val[start] = val[start - 1];
|
|
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
|
|
|
|
if (i < N - 1) {
|
|
val[start + 2] = (float)rand() / RAND_MAX;
|
|
}
|
|
}
|
|
|
|
I[N] = nz;
|
|
}
|
|
|
|
__global__ void initVectors(float *rhs, float *x, int N) {
|
|
size_t gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (size_t i = gid; i < N; i += gridDim.x * blockDim.x) {
|
|
rhs[i] = 1.0;
|
|
x[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
__global__ void gpuDotProduct(float *vecA, float *vecB, float *result,
|
|
int size) {
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
|
|
int gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
extern __shared__ double tmp[];
|
|
|
|
double temp_sum = 0.0;
|
|
for (int i = gid; i < size; i += gridDim.x * blockDim.x) {
|
|
temp_sum += (double)(vecA[i] * vecB[i]);
|
|
}
|
|
tmp[cta.thread_rank()] = temp_sum;
|
|
|
|
cg::sync(cta);
|
|
|
|
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
|
|
|
|
double beta = temp_sum;
|
|
double temp;
|
|
|
|
for (int i = tile32.size() / 2; i > 0; i >>= 1) {
|
|
if (tile32.thread_rank() < i) {
|
|
temp = tmp[cta.thread_rank() + i];
|
|
beta += temp;
|
|
tmp[cta.thread_rank()] = beta;
|
|
}
|
|
cg::sync(tile32);
|
|
}
|
|
cg::sync(cta);
|
|
|
|
if (cta.thread_rank() == 0) {
|
|
beta = 0.0;
|
|
for (int i = 0; i < cta.size(); i += tile32.size()) {
|
|
beta += tmp[i];
|
|
}
|
|
atomicAdd(result, (float)beta);
|
|
}
|
|
}
|
|
|
|
__global__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows,
|
|
float alpha, float *inputVecX, float *outputVecY) {
|
|
size_t gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (size_t i = gid; i < num_rows; i += blockDim.x * gridDim.x) {
|
|
int row_elem = I[i];
|
|
int next_row_elem = I[i + 1];
|
|
int num_elems_this_row = next_row_elem - row_elem;
|
|
|
|
float output = 0.0;
|
|
for (int j = 0; j < num_elems_this_row; j++) {
|
|
output += alpha * val[row_elem + j] * inputVecX[J[row_elem + j]];
|
|
}
|
|
|
|
outputVecY[i] = output;
|
|
}
|
|
}
|
|
|
|
__global__ void r1_div_x(float *r1, float *r0, float *b) {
|
|
int gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (gid == 0) {
|
|
b[0] = r1[0] / r0[0];
|
|
}
|
|
}
|
|
|
|
__global__ void a_minus(float *a, float *na) {
|
|
int gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (gid == 0) {
|
|
na[0] = -(a[0]);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int N = 0, nz = 0, *I = NULL, *J = NULL;
|
|
float *val = NULL;
|
|
const float tol = 1e-5f;
|
|
const int max_iter = 10000;
|
|
float *x;
|
|
float *rhs;
|
|
float r1;
|
|
|
|
int *d_col, *d_row;
|
|
float *d_val, *d_x;
|
|
float *d_r, *d_p, *d_Ax;
|
|
int k;
|
|
float alpha, beta, alpham1;
|
|
|
|
cudaStream_t stream1, streamForGraph;
|
|
|
|
// This will pick the best possible CUDA capable device
|
|
cudaDeviceProp deviceProp;
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (devID < 0) {
|
|
printf("exiting...\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
|
|
|
|
// Statistics about the GPU device
|
|
printf(
|
|
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
|
|
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
|
|
|
|
/* Generate a random tridiagonal symmetric matrix in CSR format */
|
|
N = 1048576;
|
|
nz = (N - 2) * 3 + 4;
|
|
I = (int *)malloc(sizeof(int) * (N + 1));
|
|
J = (int *)malloc(sizeof(int) * nz);
|
|
val = (float *)malloc(sizeof(float) * nz);
|
|
genTridiag(I, J, val, N, nz);
|
|
|
|
x = (float *)malloc(sizeof(float) * N);
|
|
rhs = (float *)malloc(sizeof(float) * N);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rhs[i] = 1.0;
|
|
x[i] = 0.0;
|
|
}
|
|
|
|
/* Get handle to the CUBLAS context */
|
|
cublasHandle_t cublasHandle = 0;
|
|
cublasStatus_t cublasStatus;
|
|
cublasStatus = cublasCreate(&cublasHandle);
|
|
|
|
checkCudaErrors(cublasStatus);
|
|
|
|
/* Get handle to the CUSPARSE context */
|
|
cusparseHandle_t cusparseHandle = 0;
|
|
cusparseStatus_t cusparseStatus;
|
|
cusparseStatus = cusparseCreate(&cusparseHandle);
|
|
|
|
checkCudaErrors(cusparseStatus);
|
|
|
|
checkCudaErrors(cudaStreamCreate(&stream1));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float)));
|
|
|
|
float *d_r1, *d_r0, *d_dot, *d_a, *d_na, *d_b;
|
|
checkCudaErrors(cudaMalloc((void **)&d_r1, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r0, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_dot, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_a, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_na, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(float)));
|
|
|
|
cusparseMatDescr_t descr = 0;
|
|
checkCudaErrors(cusparseCreateMatDescr(&descr));
|
|
|
|
checkCudaErrors(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
checkCudaErrors(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
|
|
|
|
int numBlocks = 0, blockSize = 0, numBlocks2 = 0, blockSize2 = 0;
|
|
checkCudaErrors(
|
|
cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, initVectors));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_col, J, nz * sizeof(int),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
checkCudaErrors(cudaMemcpyAsync(d_row, I, (N + 1) * sizeof(int),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
checkCudaErrors(cudaMemcpyAsync(d_val, val, nz * sizeof(float),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
|
|
initVectors<<<numBlocks, blockSize, 0, stream1>>>(d_r, d_x, N);
|
|
|
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&numBlocks2, &blockSize2,
|
|
gpuSpMV));
|
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize,
|
|
gpuDotProduct));
|
|
|
|
alpha = 1.0;
|
|
alpham1 = -1.0;
|
|
beta = 0.0;
|
|
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
checkCudaErrors(
|
|
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
|
|
&alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax));
|
|
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE));
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
|
|
k = 1;
|
|
// First Iteration when k=1 starts
|
|
checkCudaErrors(cublasScopy(cublasHandle, N, d_r, 1, d_p, 1));
|
|
checkCudaErrors(
|
|
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
|
|
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
|
|
// First Iteration when k=1 ends
|
|
k++;
|
|
|
|
#if WITH_GRAPH
|
|
cudaGraph_t initGraph;
|
|
checkCudaErrors(cudaStreamCreate(&streamForGraph));
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
checkCudaErrors(cudaStreamBeginCapture(stream1));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
|
|
#if 0 // Use cusparseScsrmv API when it is cuda graph compliant
|
|
checkCudaErrors(
|
|
cusparseSetPointerMode(cusparseHandle, CUSPARSE_POINTER_MODE_HOST));
|
|
checkCudaErrors(
|
|
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
|
|
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
|
|
#else
|
|
gpuSpMV<<<numBlocks2, blockSize2, 0, stream1>>>(d_row, d_col, d_val, nz,
|
|
N, alpha, d_p, d_Ax);
|
|
#endif
|
|
|
|
checkCudaErrors(cudaMemsetAsync(d_dot, 0, sizeof(float), stream1));
|
|
// Use cublasSdot API when it is cuda graph compliant.
|
|
// checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
gpuDotProduct<<<numBlocks, blockSize, blockSize * sizeof(double), stream1>>>(
|
|
d_p, d_Ax, d_dot, N);
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
checkCudaErrors(cudaMemsetAsync(d_r1, 0, sizeof(float), stream1));
|
|
// Use cublasSdot API when it is cuda graph compliant.
|
|
// checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
gpuDotProduct<<<numBlocks, blockSize, blockSize * sizeof(double), stream1>>>(
|
|
d_r, d_r, d_r1, N);
|
|
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
|
|
checkCudaErrors(cudaStreamEndCapture(stream1, &initGraph));
|
|
cudaGraphExec_t graphExec;
|
|
checkCudaErrors(cudaGraphInstantiate(&graphExec, initGraph, NULL, NULL, 0));
|
|
#endif
|
|
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
|
|
while (r1 > tol * tol && k <= max_iter) {
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
|
|
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
|
|
#else
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
|
|
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
|
|
|
|
checkCudaErrors(cusparseScsrmv(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha,
|
|
descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
|
|
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
#endif
|
|
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
|
|
k++;
|
|
}
|
|
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
|
|
cudaMemcpyDeviceToHost, streamForGraph));
|
|
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
|
|
#else
|
|
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
#endif
|
|
|
|
float rsum, diff, err = 0.0;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rsum = 0.0;
|
|
|
|
for (int j = I[i]; j < I[i + 1]; j++) {
|
|
rsum += val[j] * x[J[j]];
|
|
}
|
|
|
|
diff = fabs(rsum - rhs[i]);
|
|
|
|
if (diff > err) {
|
|
err = diff;
|
|
}
|
|
}
|
|
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaGraphExecDestroy(graphExec));
|
|
checkCudaErrors(cudaGraphDestroy(initGraph));
|
|
checkCudaErrors(cudaStreamDestroy(streamForGraph));
|
|
#endif
|
|
checkCudaErrors(cudaStreamDestroy(stream1));
|
|
cusparseDestroy(cusparseHandle);
|
|
cublasDestroy(cublasHandle);
|
|
|
|
free(I);
|
|
free(J);
|
|
free(val);
|
|
free(x);
|
|
free(rhs);
|
|
cudaFree(d_col);
|
|
cudaFree(d_row);
|
|
cudaFree(d_val);
|
|
cudaFree(d_x);
|
|
cudaFree(d_r);
|
|
cudaFree(d_p);
|
|
cudaFree(d_Ax);
|
|
|
|
printf("Test Summary: Error amount = %f\n", err);
|
|
exit((k <= max_iter) ? 0 : 1);
|
|
}
|