mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 20:39:17 +08:00
223 lines
7.3 KiB
Plaintext
223 lines
7.3 KiB
Plaintext
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
// includes, project
|
|
#include <helper_cuda.h>
|
|
#include <helper_functions.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
#define NUM_ELEMS 10000000
|
|
#define NUM_THREADS_PER_BLOCK 512
|
|
|
|
// warp-aggregated atomic increment
|
|
__device__ int atomicAggInc(int *counter) {
|
|
cg::coalesced_group active = cg::coalesced_threads();
|
|
|
|
// leader does the update
|
|
int res = 0;
|
|
if (active.thread_rank() == 0) {
|
|
res = atomicAdd(counter, active.size());
|
|
}
|
|
|
|
// broadcast result
|
|
res = active.shfl(res, 0);
|
|
|
|
// each thread computes its own value
|
|
return res + active.thread_rank();
|
|
}
|
|
|
|
__global__ void filter_arr(int *dst, int *nres, const int *src, int n) {
|
|
int id = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
for (int i = id; i < n; i += gridDim.x * blockDim.x) {
|
|
if (src[i] > 0) dst[atomicAggInc(nres)] = src[i];
|
|
}
|
|
}
|
|
|
|
// warp-aggregated atomic multi bucket increment
|
|
#if __CUDA_ARCH__ >= 700
|
|
__device__ int atomicAggIncMulti(const int bucket, int *counter)
|
|
{
|
|
cg::coalesced_group active = cg::coalesced_threads();
|
|
// group all threads with same bucket value.
|
|
auto labeledGroup = cg::labeled_partition(active, bucket);
|
|
|
|
int res = 0;
|
|
if (labeledGroup.thread_rank() == 0)
|
|
{
|
|
res = atomicAdd(&counter[bucket], labeledGroup.size());
|
|
}
|
|
|
|
// broadcast result
|
|
res = labeledGroup.shfl(res, 0);
|
|
|
|
// each thread computes its own value
|
|
return res + labeledGroup.thread_rank();
|
|
}
|
|
#endif
|
|
|
|
// Places individual value indices into its corresponding buckets.
|
|
__global__ void mapToBuckets(const int *srcArr, int *indicesBuckets, int *bucketCounters, const int srcSize, const int numOfBuckets)
|
|
{
|
|
#if __CUDA_ARCH__ >= 700
|
|
cg::grid_group grid = cg::this_grid();
|
|
|
|
for (int i=grid.thread_rank(); i < srcSize; i += grid.size())
|
|
{
|
|
const int bucket = srcArr[i];
|
|
if (bucket < numOfBuckets)
|
|
{
|
|
indicesBuckets[atomicAggIncMulti(bucket, bucketCounters)] = i;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int mapIndicesToBuckets(int *h_srcArr, int *d_srcArr, int numOfBuckets)
|
|
{
|
|
int *d_indicesBuckets, *d_bucketCounters;
|
|
int *cpuBucketCounters = new int[numOfBuckets];
|
|
int *h_bucketCounters = new int[numOfBuckets];
|
|
|
|
memset(cpuBucketCounters, 0, sizeof(int)*numOfBuckets);
|
|
// Initialize each bucket counters.
|
|
for (int i = 0; i < numOfBuckets; i++)
|
|
{
|
|
h_bucketCounters[i] = i*NUM_ELEMS;
|
|
}
|
|
|
|
checkCudaErrors(cudaMalloc(&d_indicesBuckets, sizeof(int) * NUM_ELEMS * numOfBuckets));
|
|
checkCudaErrors(cudaMalloc(&d_bucketCounters, sizeof(int) * numOfBuckets));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_bucketCounters, h_bucketCounters, sizeof(int)*numOfBuckets, cudaMemcpyHostToDevice));
|
|
|
|
dim3 dimBlock(NUM_THREADS_PER_BLOCK, 1, 1);
|
|
dim3 dimGrid((NUM_ELEMS / NUM_THREADS_PER_BLOCK), 1, 1);
|
|
|
|
mapToBuckets<<<dimGrid, dimBlock>>>(d_srcArr, d_indicesBuckets, d_bucketCounters, NUM_ELEMS, numOfBuckets);
|
|
|
|
checkCudaErrors(cudaMemcpy(h_bucketCounters, d_bucketCounters, sizeof(int)*numOfBuckets, cudaMemcpyDeviceToHost));
|
|
|
|
for (int i=0; i < NUM_ELEMS; i++)
|
|
{
|
|
cpuBucketCounters[h_srcArr[i]]++;
|
|
}
|
|
|
|
bool allMatch = true;
|
|
int finalElems = 0;
|
|
for (int i=0; i < numOfBuckets; i++)
|
|
{
|
|
finalElems += (h_bucketCounters[i] - i*NUM_ELEMS);
|
|
if (cpuBucketCounters[i] != (h_bucketCounters[i] - i*NUM_ELEMS))
|
|
{
|
|
allMatch = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!allMatch && finalElems != NUM_ELEMS)
|
|
{
|
|
return EXIT_FAILURE;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int *data_to_filter, *filtered_data, nres = 0;
|
|
int *d_data_to_filter, *d_filtered_data, *d_nres;
|
|
|
|
int numOfBuckets = 5;
|
|
|
|
data_to_filter = reinterpret_cast<int *>(malloc(sizeof(int) * NUM_ELEMS));
|
|
|
|
// Generate input data.
|
|
for (int i = 0; i < NUM_ELEMS; i++) {
|
|
data_to_filter[i] = rand() % numOfBuckets;
|
|
}
|
|
|
|
int devId = findCudaDevice(argc, (const char **)argv);
|
|
|
|
checkCudaErrors(cudaMalloc(&d_data_to_filter, sizeof(int) * NUM_ELEMS));
|
|
checkCudaErrors(cudaMalloc(&d_filtered_data, sizeof(int) * NUM_ELEMS));
|
|
checkCudaErrors(cudaMalloc(&d_nres, sizeof(int)));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_data_to_filter, data_to_filter,
|
|
sizeof(int) * NUM_ELEMS, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemset(d_nres, 0, sizeof(int)));
|
|
|
|
dim3 dimBlock(NUM_THREADS_PER_BLOCK, 1, 1);
|
|
dim3 dimGrid((NUM_ELEMS / NUM_THREADS_PER_BLOCK) + 1, 1, 1);
|
|
|
|
filter_arr<<<dimGrid, dimBlock>>>(d_filtered_data, d_nres, d_data_to_filter,
|
|
NUM_ELEMS);
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(&nres, d_nres, sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
filtered_data = reinterpret_cast<int *>(malloc(sizeof(int) * nres));
|
|
|
|
checkCudaErrors(cudaMemcpy(filtered_data, d_filtered_data, sizeof(int) * nres,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
int *host_filtered_data =
|
|
reinterpret_cast<int *>(malloc(sizeof(int) * NUM_ELEMS));
|
|
|
|
// Generate host output with host filtering code.
|
|
int host_flt_count = 0;
|
|
for (int i = 0; i < NUM_ELEMS; i++) {
|
|
if (data_to_filter[i] > 0) {
|
|
host_filtered_data[host_flt_count++] = data_to_filter[i];
|
|
}
|
|
}
|
|
|
|
int major = 0;
|
|
checkCudaErrors(cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, devId));
|
|
|
|
int mapIndicesToBucketsStatus = EXIT_SUCCESS;
|
|
// atomicAggIncMulti require a GPU of Volta (SM7X) architecture or higher,
|
|
// so that it can take advantage of the new MATCH capability of Volta hardware
|
|
if (major >= 7) {
|
|
mapIndicesToBucketsStatus = mapIndicesToBuckets(data_to_filter, d_data_to_filter, numOfBuckets);
|
|
}
|
|
|
|
printf("\nWarp Aggregated Atomics %s \n",
|
|
(host_flt_count == nres) && (mapIndicesToBucketsStatus == EXIT_SUCCESS) ? "PASSED" : "FAILED");
|
|
|
|
checkCudaErrors(cudaFree(d_data_to_filter));
|
|
checkCudaErrors(cudaFree(d_filtered_data));
|
|
checkCudaErrors(cudaFree(d_nres));
|
|
free(data_to_filter);
|
|
free(filtered_data);
|
|
free(host_filtered_data);
|
|
}
|