mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 22:59:18 +08:00
330 lines
11 KiB
Plaintext
330 lines
11 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample demonstrates Inter Process Communication
|
|
* using one process per GPU for computation.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <vector>
|
|
#include "helper_cuda.h"
|
|
#include "helper_multiprocess.h"
|
|
static const char shmName[] = "simpleIPCshm";
|
|
// For direct NVLINK and PCI-E peers, at max 8 simultaneous peers are allowed
|
|
// For NVSWITCH connected peers like DGX-2, simultaneous peers are not limited
|
|
// in the same way.
|
|
#define MAX_DEVICES (32)
|
|
#define DATA_SIZE (64ULL << 20ULL) // 64MB
|
|
|
|
#if defined(__linux__)
|
|
#define cpu_atomic_add32(a, x) __sync_add_and_fetch(a, x)
|
|
#elif defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
|
#define cpu_atomic_add32(a, x) InterlockedAdd((volatile LONG *)a, x)
|
|
#else
|
|
#error Unsupported system
|
|
#endif
|
|
|
|
typedef struct shmStruct_st {
|
|
size_t nprocesses;
|
|
int barrier;
|
|
int sense;
|
|
int devices[MAX_DEVICES];
|
|
cudaIpcMemHandle_t memHandle[MAX_DEVICES];
|
|
cudaIpcEventHandle_t eventHandle[MAX_DEVICES];
|
|
} shmStruct;
|
|
|
|
__global__ void simpleKernel(char *ptr, int sz, char val) {
|
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (; idx < sz; idx += (gridDim.x * blockDim.x)) {
|
|
ptr[idx] = val;
|
|
}
|
|
}
|
|
|
|
static void barrierWait(volatile int *barrier, volatile int *sense,
|
|
unsigned int n) {
|
|
int count;
|
|
|
|
// Check-in
|
|
count = cpu_atomic_add32(barrier, 1);
|
|
if (count == n) // Last one in
|
|
*sense = 1;
|
|
while (!*sense)
|
|
;
|
|
|
|
// Check-out
|
|
count = cpu_atomic_add32(barrier, -1);
|
|
if (count == 0) // Last one out
|
|
*sense = 0;
|
|
while (*sense)
|
|
;
|
|
}
|
|
|
|
static void childProcess(int id) {
|
|
volatile shmStruct *shm = NULL;
|
|
cudaStream_t stream;
|
|
sharedMemoryInfo info;
|
|
size_t procCount, i;
|
|
int blocks = 0;
|
|
int threads = 128;
|
|
cudaDeviceProp prop;
|
|
std::vector<void *> ptrs;
|
|
std::vector<cudaEvent_t> events;
|
|
std::vector<char> verification_buffer(DATA_SIZE);
|
|
|
|
if (sharedMemoryOpen(shmName, sizeof(shmStruct), &info) != 0) {
|
|
printf("Failed to create shared memory slab\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
shm = (volatile shmStruct *)info.addr;
|
|
procCount = shm->nprocesses;
|
|
|
|
printf("Process %d: Starting on device %d...\n", id, shm->devices[id]);
|
|
|
|
checkCudaErrors(cudaSetDevice(shm->devices[id]));
|
|
checkCudaErrors(cudaGetDeviceProperties(&prop, shm->devices[id]));
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
|
&blocks, simpleKernel, threads, 0));
|
|
blocks *= prop.multiProcessorCount;
|
|
|
|
// Open and track all the allocations and events created in the master
|
|
// process for use later
|
|
for (i = 0; i < procCount; i++) {
|
|
void *ptr = NULL;
|
|
cudaEvent_t event;
|
|
|
|
// Notice, we don't need to explicitly enable peer access for
|
|
// allocations on other devices.
|
|
checkCudaErrors(
|
|
cudaIpcOpenMemHandle(&ptr, *(cudaIpcMemHandle_t *)&shm->memHandle[i],
|
|
cudaIpcMemLazyEnablePeerAccess));
|
|
checkCudaErrors(cudaIpcOpenEventHandle(
|
|
&event, *(cudaIpcEventHandle_t *)&shm->eventHandle[i]));
|
|
|
|
ptrs.push_back(ptr);
|
|
events.push_back(event);
|
|
}
|
|
|
|
// At each iteration of the loop, each sibling process will push work on
|
|
// their respective devices accessing the next peer mapped buffer allocated
|
|
// by the master process (these can come from other sibling processes as
|
|
// well). To coordinate each process' access, we force the stream to wait for
|
|
// the work already accessing this buffer asynchronously through IPC events,
|
|
// allowing the CPU processes to continue to queue more work.
|
|
for (i = 0; i < procCount; i++) {
|
|
size_t bufferId = (i + id) % procCount;
|
|
// Wait for the buffer to be accessed to be ready
|
|
checkCudaErrors(cudaStreamWaitEvent(stream, events[bufferId], 0));
|
|
// Push a simple kernel on it
|
|
simpleKernel<<<blocks, threads, 0, stream>>>((char *)ptrs[bufferId],
|
|
DATA_SIZE, id);
|
|
checkCudaErrors(cudaGetLastError());
|
|
// Signal that this buffer is ready for the next consumer
|
|
checkCudaErrors(cudaEventRecord(events[bufferId], stream));
|
|
// Wait for all my sibling processes to push this stage of their work
|
|
// before proceeding to the next. This prevents siblings from racing
|
|
// ahead and clobbering the recorded event or waiting on the wrong
|
|
// recorded event.
|
|
barrierWait(&shm->barrier, &shm->sense, (unsigned int)procCount);
|
|
if (id == 0) {
|
|
printf("Step %lld done\n", (unsigned long long)i);
|
|
}
|
|
}
|
|
|
|
// Now wait for my buffer to be ready so I can copy it locally and verify it
|
|
checkCudaErrors(cudaStreamWaitEvent(stream, events[id], 0));
|
|
checkCudaErrors(cudaMemcpyAsync(&verification_buffer[0], ptrs[id], DATA_SIZE,
|
|
cudaMemcpyDeviceToHost, stream));
|
|
// And wait for all the queued up work to complete
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
|
|
printf("Process %d: verifying...\n", id);
|
|
|
|
// The contents should have the id of the sibling just after me
|
|
char compareId = (char)((id + 1) % procCount);
|
|
for (unsigned long long j = 0; j < DATA_SIZE; j++) {
|
|
if (verification_buffer[j] != compareId) {
|
|
printf("Process %d: Verification mismatch at %lld: %d != %d\n", id, j,
|
|
(int)verification_buffer[j], (int)compareId);
|
|
}
|
|
}
|
|
|
|
// Clean up!
|
|
for (i = 0; i < procCount; i++) {
|
|
checkCudaErrors(cudaIpcCloseMemHandle(ptrs[i]));
|
|
checkCudaErrors(cudaEventDestroy(events[i]));
|
|
}
|
|
|
|
checkCudaErrors(cudaStreamDestroy(stream));
|
|
|
|
printf("Process %d complete!\n", id);
|
|
}
|
|
|
|
static void parentProcess(char *app) {
|
|
sharedMemoryInfo info;
|
|
int devCount, i;
|
|
volatile shmStruct *shm = NULL;
|
|
std::vector<void *> ptrs;
|
|
std::vector<cudaEvent_t> events;
|
|
std::vector<Process> processes;
|
|
|
|
checkCudaErrors(cudaGetDeviceCount(&devCount));
|
|
|
|
if (sharedMemoryCreate(shmName, sizeof(*shm), &info) != 0) {
|
|
printf("Failed to create shared memory slab\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
shm = (volatile shmStruct *)info.addr;
|
|
memset((void *)shm, 0, sizeof(*shm));
|
|
|
|
// Pick all the devices that can access each other's memory for this test
|
|
// Keep in mind that CUDA has minimal support for fork() without a
|
|
// corresponding exec() in the child process, but in this case our
|
|
// spawnProcess will always exec, so no need to worry.
|
|
for (i = 0; i < devCount; i++) {
|
|
bool allPeers = true;
|
|
cudaDeviceProp prop;
|
|
checkCudaErrors(cudaGetDeviceProperties(&prop, i));
|
|
|
|
// CUDA IPC is only supported on devices with unified addressing
|
|
if (!prop.unifiedAddressing) {
|
|
printf("Device %d does not support unified addressing, skipping...\n", i);
|
|
continue;
|
|
}
|
|
// This sample requires two processes accessing each device, so we need
|
|
// to ensure exclusive or prohibited mode is not set
|
|
if (prop.computeMode != cudaComputeModeDefault) {
|
|
printf("Device %d is in an unsupported compute mode for this sample\n",
|
|
i);
|
|
continue;
|
|
}
|
|
|
|
for (int j = 0; j < shm->nprocesses; j++) {
|
|
int canAccessPeerIJ, canAccessPeerJI;
|
|
checkCudaErrors(
|
|
cudaDeviceCanAccessPeer(&canAccessPeerJI, shm->devices[j], i));
|
|
checkCudaErrors(
|
|
cudaDeviceCanAccessPeer(&canAccessPeerIJ, i, shm->devices[j]));
|
|
if (!canAccessPeerIJ || !canAccessPeerJI) {
|
|
allPeers = false;
|
|
break;
|
|
}
|
|
}
|
|
if (allPeers) {
|
|
// Enable peers here. This isn't necessary for IPC, but it will
|
|
// setup the peers for the device. For systems that only allow 8
|
|
// peers per GPU at a time, this acts to remove devices from CanAccessPeer
|
|
for (int j = 0; j < shm->nprocesses; j++) {
|
|
checkCudaErrors(cudaSetDevice(i));
|
|
checkCudaErrors(cudaDeviceEnablePeerAccess(shm->devices[j], 0));
|
|
checkCudaErrors(cudaSetDevice(shm->devices[j]));
|
|
checkCudaErrors(cudaDeviceEnablePeerAccess(i, 0));
|
|
}
|
|
shm->devices[shm->nprocesses++] = i;
|
|
if (shm->nprocesses >= MAX_DEVICES) break;
|
|
} else {
|
|
printf(
|
|
"Device %d is not peer capable with some other selected peers, "
|
|
"skipping\n",
|
|
i);
|
|
}
|
|
}
|
|
|
|
if (shm->nprocesses == 0) {
|
|
printf("No CUDA devices support IPC\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
// Now allocate memory and an event for each process and fill the shared
|
|
// memory buffer with the IPC handles to communicate
|
|
for (i = 0; i < shm->nprocesses; i++) {
|
|
void *ptr = NULL;
|
|
cudaEvent_t event;
|
|
|
|
checkCudaErrors(cudaSetDevice(shm->devices[i]));
|
|
checkCudaErrors(cudaMalloc(&ptr, DATA_SIZE));
|
|
checkCudaErrors(
|
|
cudaIpcGetMemHandle((cudaIpcMemHandle_t *)&shm->memHandle[i], ptr));
|
|
checkCudaErrors(cudaEventCreate(
|
|
&event, cudaEventDisableTiming | cudaEventInterprocess));
|
|
checkCudaErrors(cudaIpcGetEventHandle(
|
|
(cudaIpcEventHandle_t *)&shm->eventHandle[i], event));
|
|
|
|
ptrs.push_back(ptr);
|
|
events.push_back(event);
|
|
}
|
|
|
|
// Launch the child processes!
|
|
for (i = 0; i < shm->nprocesses; i++) {
|
|
char devIdx[10];
|
|
char *const args[] = {app, devIdx, NULL};
|
|
Process process;
|
|
|
|
SPRINTF(devIdx, "%d", i);
|
|
|
|
if (spawnProcess(&process, app, args)) {
|
|
printf("Failed to create process\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
processes.push_back(process);
|
|
}
|
|
|
|
// And wait for them to finish
|
|
for (i = 0; i < processes.size(); i++) {
|
|
if (waitProcess(&processes[i]) != EXIT_SUCCESS) {
|
|
printf("Process %d failed!\n", i);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
// Clean up!
|
|
for (i = 0; i < shm->nprocesses; i++) {
|
|
checkCudaErrors(cudaSetDevice(shm->devices[i]));
|
|
checkCudaErrors(cudaEventSynchronize(events[i]));
|
|
checkCudaErrors(cudaEventDestroy(events[i]));
|
|
checkCudaErrors(cudaFree(ptrs[i]));
|
|
}
|
|
|
|
sharedMemoryClose(&info);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
#if defined(__arm__) || defined(__aarch64__)
|
|
printf("Not supported on ARM\n");
|
|
return EXIT_WAIVED;
|
|
#else
|
|
if (argc == 1) {
|
|
parentProcess(argv[0]);
|
|
} else {
|
|
childProcess(atoi(argv[1]));
|
|
}
|
|
return EXIT_SUCCESS;
|
|
#endif
|
|
}
|