mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 14:59:19 +08:00
450 lines
16 KiB
C++
450 lines
16 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <cuda_runtime.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "cusolverSp.h"
|
|
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
|
|
#include "helper_cuda.h"
|
|
#include "helper_cusolver.h"
|
|
|
|
template <typename T_ELEM>
|
|
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
|
|
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
|
|
int **aColInd, int extendSymMatrix);
|
|
|
|
void UsageSP(void) {
|
|
printf("<options>\n");
|
|
printf("-h : display this help\n");
|
|
printf("-file=<filename> : filename containing a matrix in MM format\n");
|
|
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
|
|
|
|
exit(0);
|
|
}
|
|
|
|
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
|
|
UsageSP();
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
|
char *fileName = 0;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
|
|
|
|
if (fileName) {
|
|
opts.sparse_mat_filename = fileName;
|
|
} else {
|
|
printf("\nIncorrect filename passed to -file \n ");
|
|
UsageSP();
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
struct testOpts opts;
|
|
cusolverSpHandle_t cusolverSpH =
|
|
NULL; // reordering, permutation and 1st LU factorization
|
|
cusparseHandle_t cusparseH = NULL; // residual evaluation
|
|
cudaStream_t stream = NULL;
|
|
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
|
|
|
|
csrqrInfoHost_t h_info =
|
|
NULL; // opaque info structure for LU with parital pivoting
|
|
csrqrInfo_t d_info =
|
|
NULL; // opaque info structure for LU with parital pivoting
|
|
|
|
int rowsA = 0; // number of rows of A
|
|
int colsA = 0; // number of columns of A
|
|
int nnzA = 0; // number of nonzeros of A
|
|
int baseA = 0; // base index in CSR format
|
|
|
|
// CSR(A) from I/O
|
|
int *h_csrRowPtrA = NULL; // <int> n+1
|
|
int *h_csrColIndA = NULL; // <int> nnzA
|
|
double *h_csrValA = NULL; // <double> nnzA
|
|
|
|
double *h_x = NULL; // <double> n, x = A \ b
|
|
double *h_b = NULL; // <double> n, b = ones(m,1)
|
|
double *h_bcopy = NULL; // <double> n, b = ones(m,1)
|
|
double *h_r = NULL; // <double> n, r = b - A*x
|
|
|
|
size_t size_internal = 0;
|
|
size_t size_chol = 0; // size of working space for csrlu
|
|
void *buffer_cpu = NULL; // working space for Cholesky
|
|
void *buffer_gpu = NULL; // working space for Cholesky
|
|
|
|
int *d_csrRowPtrA = NULL; // <int> n+1
|
|
int *d_csrColIndA = NULL; // <int> nnzA
|
|
double *d_csrValA = NULL; // <double> nnzA
|
|
double *d_x = NULL; // <double> n, x = A \ b
|
|
double *d_b = NULL; // <double> n, a copy of h_b
|
|
double *d_r = NULL; // <double> n, r = b - A*x
|
|
|
|
// the constants used in residual evaluation, r = b - A*x
|
|
const double minus_one = -1.0;
|
|
const double one = 1.0;
|
|
const double zero = 0.0;
|
|
// the constant used in cusolverSp
|
|
// singularity is -1 if A is invertible under tol
|
|
// tol determines the condition of singularity
|
|
int singularity = 0;
|
|
const double tol = 1.e-14;
|
|
|
|
double x_inf = 0.0; // |x|
|
|
double r_inf = 0.0; // |r|
|
|
double A_inf = 0.0; // |A|
|
|
|
|
parseCommandLineArguments(argc, argv, opts);
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (opts.sparse_mat_filename == NULL) {
|
|
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n32.mtx", argv[0]);
|
|
if (opts.sparse_mat_filename != NULL)
|
|
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
|
|
else
|
|
printf("Could not find lap2D_5pt_n32.mtx\n");
|
|
} else {
|
|
printf("Using input file [%s]\n", opts.sparse_mat_filename);
|
|
}
|
|
|
|
printf("step 1: read matrix market format\n");
|
|
|
|
if (opts.sparse_mat_filename) {
|
|
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
|
|
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
|
|
&h_csrColIndA, true)) {
|
|
return 1;
|
|
}
|
|
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
|
|
} else {
|
|
fprintf(stderr, "Error: input matrix is not provided\n");
|
|
return 1;
|
|
}
|
|
|
|
if (rowsA != colsA) {
|
|
fprintf(stderr, "Error: only support square matrix\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
|
|
nnzA, baseA);
|
|
|
|
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
|
|
checkCudaErrors(cusparseCreate(&cusparseH));
|
|
checkCudaErrors(cudaStreamCreate(&stream));
|
|
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
|
|
checkCudaErrors(cusparseSetStream(cusparseH, stream));
|
|
|
|
checkCudaErrors(cusparseCreateMatDescr(&descrA));
|
|
|
|
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
|
|
} else {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
|
|
}
|
|
|
|
h_x = (double *)malloc(sizeof(double) * colsA);
|
|
h_b = (double *)malloc(sizeof(double) * rowsA);
|
|
h_bcopy = (double *)malloc(sizeof(double) * rowsA);
|
|
h_r = (double *)malloc(sizeof(double) * rowsA);
|
|
|
|
assert(NULL != h_x);
|
|
assert(NULL != h_b);
|
|
assert(NULL != h_bcopy);
|
|
assert(NULL != h_r);
|
|
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
|
|
|
|
for (int row = 0; row < rowsA; row++) {
|
|
h_b[row] = 1.0;
|
|
}
|
|
|
|
memcpy(h_bcopy, h_b, sizeof(double) * rowsA);
|
|
|
|
printf("step 2: create opaque info structure\n");
|
|
checkCudaErrors(cusolverSpCreateCsrqrInfoHost(&h_info));
|
|
|
|
printf("step 3: analyze qr(A) to know structure of L\n");
|
|
checkCudaErrors(cusolverSpXcsrqrAnalysisHost(cusolverSpH, rowsA, colsA, nnzA,
|
|
descrA, h_csrRowPtrA,
|
|
h_csrColIndA, h_info));
|
|
|
|
printf("step 4: workspace for qr(A)\n");
|
|
checkCudaErrors(cusolverSpDcsrqrBufferInfoHost(
|
|
cusolverSpH, rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
|
|
h_csrColIndA, h_info, &size_internal, &size_chol));
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
buffer_cpu = (void *)malloc(sizeof(char) * size_chol);
|
|
assert(NULL != buffer_cpu);
|
|
|
|
printf("step 5: compute A = L*L^T \n");
|
|
checkCudaErrors(cusolverSpDcsrqrSetupHost(cusolverSpH, rowsA, colsA, nnzA,
|
|
descrA, h_csrValA, h_csrRowPtrA,
|
|
h_csrColIndA, zero, h_info));
|
|
|
|
checkCudaErrors(cusolverSpDcsrqrFactorHost(cusolverSpH, rowsA, colsA, nnzA,
|
|
NULL, NULL, h_info, buffer_cpu));
|
|
|
|
printf("step 6: check if the matrix is singular \n");
|
|
checkCudaErrors(
|
|
cusolverSpDcsrqrZeroPivotHost(cusolverSpH, h_info, tol, &singularity));
|
|
|
|
if (0 <= singularity) {
|
|
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
|
|
singularity);
|
|
return 1;
|
|
}
|
|
|
|
printf("step 7: solve A*x = b \n");
|
|
checkCudaErrors(cusolverSpDcsrqrSolveHost(cusolverSpH, rowsA, colsA, h_b, h_x,
|
|
h_info, buffer_cpu));
|
|
|
|
printf("step 8: evaluate residual r = b - A*x (result on CPU)\n");
|
|
// use GPU gemv to compute r = b - A*x
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_x, h_x, sizeof(double) * colsA, cudaMemcpyHostToDevice));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
|
|
} else {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
|
|
}
|
|
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one,
|
|
vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
|
|
h_csrColIndA);
|
|
|
|
printf("(CPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(CPU) |A| = %E \n", A_inf);
|
|
printf("(CPU) |x| = %E \n", x_inf);
|
|
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
|
|
|
|
printf("step 9: create opaque info structure\n");
|
|
checkCudaErrors(cusolverSpCreateCsrqrInfo(&d_info));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_b, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
|
|
printf("step 10: analyze qr(A) to know structure of L\n");
|
|
checkCudaErrors(cusolverSpXcsrqrAnalysis(cusolverSpH, rowsA, colsA, nnzA,
|
|
descrA, d_csrRowPtrA, d_csrColIndA,
|
|
d_info));
|
|
|
|
printf("step 11: workspace for qr(A)\n");
|
|
checkCudaErrors(cusolverSpDcsrqrBufferInfo(
|
|
cusolverSpH, rowsA, colsA, nnzA, descrA, d_csrValA, d_csrRowPtrA,
|
|
d_csrColIndA, d_info, &size_internal, &size_chol));
|
|
|
|
printf("GPU buffer size = %lld bytes\n", (signed long long)size_chol);
|
|
if (buffer_gpu) {
|
|
checkCudaErrors(cudaFree(buffer_gpu));
|
|
}
|
|
checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char) * size_chol));
|
|
|
|
printf("step 12: compute A = L*L^T \n");
|
|
checkCudaErrors(cusolverSpDcsrqrSetup(cusolverSpH, rowsA, colsA, nnzA, descrA,
|
|
d_csrValA, d_csrRowPtrA, d_csrColIndA,
|
|
zero, d_info));
|
|
|
|
checkCudaErrors(cusolverSpDcsrqrFactor(cusolverSpH, rowsA, colsA, nnzA, NULL,
|
|
NULL, d_info, buffer_gpu));
|
|
|
|
printf("step 13: check if the matrix is singular \n");
|
|
checkCudaErrors(
|
|
cusolverSpDcsrqrZeroPivot(cusolverSpH, d_info, tol, &singularity));
|
|
|
|
if (0 <= singularity) {
|
|
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
|
|
singularity);
|
|
return 1;
|
|
}
|
|
|
|
printf("step 14: solve A*x = b \n");
|
|
checkCudaErrors(cusolverSpDcsrqrSolve(cusolverSpH, rowsA, colsA, d_b, d_x,
|
|
d_info, buffer_gpu));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
|
|
printf("(GPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
|
|
|
|
if (cusolverSpH) {
|
|
checkCudaErrors(cusolverSpDestroy(cusolverSpH));
|
|
}
|
|
if (cusparseH) {
|
|
checkCudaErrors(cusparseDestroy(cusparseH));
|
|
}
|
|
if (stream) {
|
|
checkCudaErrors(cudaStreamDestroy(stream));
|
|
}
|
|
if (descrA) {
|
|
checkCudaErrors(cusparseDestroyMatDescr(descrA));
|
|
}
|
|
if (h_info) {
|
|
checkCudaErrors(cusolverSpDestroyCsrqrInfoHost(h_info));
|
|
}
|
|
if (d_info) {
|
|
checkCudaErrors(cusolverSpDestroyCsrqrInfo(d_info));
|
|
}
|
|
|
|
if (matA) {
|
|
checkCudaErrors(cusparseDestroySpMat(matA));
|
|
}
|
|
if (vecx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecx));
|
|
}
|
|
if (vecAx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecAx));
|
|
}
|
|
|
|
if (h_csrValA) {
|
|
free(h_csrValA);
|
|
}
|
|
if (h_csrRowPtrA) {
|
|
free(h_csrRowPtrA);
|
|
}
|
|
if (h_csrColIndA) {
|
|
free(h_csrColIndA);
|
|
}
|
|
|
|
if (h_x) {
|
|
free(h_x);
|
|
}
|
|
if (h_b) {
|
|
free(h_b);
|
|
}
|
|
if (h_bcopy) {
|
|
free(h_bcopy);
|
|
}
|
|
if (h_r) {
|
|
free(h_r);
|
|
}
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
if (buffer_gpu) {
|
|
checkCudaErrors(cudaFree(buffer_gpu));
|
|
}
|
|
|
|
if (d_csrValA) {
|
|
checkCudaErrors(cudaFree(d_csrValA));
|
|
}
|
|
if (d_csrRowPtrA) {
|
|
checkCudaErrors(cudaFree(d_csrRowPtrA));
|
|
}
|
|
if (d_csrColIndA) {
|
|
checkCudaErrors(cudaFree(d_csrColIndA));
|
|
}
|
|
if (d_x) {
|
|
checkCudaErrors(cudaFree(d_x));
|
|
}
|
|
if (d_b) {
|
|
checkCudaErrors(cudaFree(d_b));
|
|
}
|
|
if (d_r) {
|
|
checkCudaErrors(cudaFree(d_r));
|
|
}
|
|
|
|
return 0;
|
|
}
|