mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 18:29:14 +08:00
154 lines
5.5 KiB
C++
154 lines
5.5 KiB
C++
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* Vector addition: C = A + B.
|
|
*
|
|
* This sample is a very basic sample that implements element by element
|
|
* vector addition. It is the same as the sample illustrating Chapter 2
|
|
* of the programming guide with some additions like error checking.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <cmath>
|
|
|
|
// For the CUDA runtime routines (prefixed with "cuda_")
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
|
|
#include <nvrtc_helper.h>
|
|
|
|
/**
|
|
* Host main routine
|
|
*/
|
|
int main(int argc, char **argv) {
|
|
char *cubin, *kernel_file;
|
|
size_t cubinSize;
|
|
kernel_file = sdkFindFilePath("vectorAdd_kernel.cu", argv[0]);
|
|
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
|
|
CUmodule module = loadCUBIN(cubin, argc, argv);
|
|
|
|
CUfunction kernel_addr;
|
|
checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "vectorAdd"));
|
|
|
|
// Print the vector length to be used, and compute its size
|
|
int numElements = 50000;
|
|
size_t size = numElements * sizeof(float);
|
|
printf("[Vector addition of %d elements]\n", numElements);
|
|
|
|
// Allocate the host input vector A
|
|
float *h_A = reinterpret_cast<float *>(malloc(size));
|
|
|
|
// Allocate the host input vector B
|
|
float *h_B = reinterpret_cast<float *>(malloc(size));
|
|
|
|
// Allocate the host output vector C
|
|
float *h_C = reinterpret_cast<float *>(malloc(size));
|
|
|
|
// Verify that allocations succeeded
|
|
if (h_A == NULL || h_B == NULL || h_C == NULL) {
|
|
fprintf(stderr, "Failed to allocate host vectors!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Initialize the host input vectors
|
|
for (int i = 0; i < numElements; ++i) {
|
|
h_A[i] = rand() / static_cast<float>(RAND_MAX);
|
|
h_B[i] = rand() / static_cast<float>(RAND_MAX);
|
|
}
|
|
|
|
// Allocate the device input vector A
|
|
CUdeviceptr d_A;
|
|
checkCudaErrors(cuMemAlloc(&d_A, size));
|
|
|
|
// Allocate the device input vector B
|
|
CUdeviceptr d_B;
|
|
checkCudaErrors(cuMemAlloc(&d_B, size));
|
|
|
|
// Allocate the device output vector C
|
|
CUdeviceptr d_C;
|
|
checkCudaErrors(cuMemAlloc(&d_C, size));
|
|
|
|
// Copy the host input vectors A and B in host memory to the device input
|
|
// vectors in device memory
|
|
printf("Copy input data from the host memory to the CUDA device\n");
|
|
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, size));
|
|
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, size));
|
|
|
|
// Launch the Vector Add CUDA Kernel
|
|
int threadsPerBlock = 256;
|
|
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
|
|
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid,
|
|
threadsPerBlock);
|
|
dim3 cudaBlockSize(threadsPerBlock, 1, 1);
|
|
dim3 cudaGridSize(blocksPerGrid, 1, 1);
|
|
|
|
void *arr[] = {reinterpret_cast<void *>(&d_A), reinterpret_cast<void *>(&d_B),
|
|
reinterpret_cast<void *>(&d_C),
|
|
reinterpret_cast<void *>(&numElements)};
|
|
checkCudaErrors(cuLaunchKernel(kernel_addr, cudaGridSize.x, cudaGridSize.y,
|
|
cudaGridSize.z, /* grid dim */
|
|
cudaBlockSize.x, cudaBlockSize.y,
|
|
cudaBlockSize.z, /* block dim */
|
|
0, 0, /* shared mem, stream */
|
|
&arr[0], /* arguments */
|
|
0));
|
|
checkCudaErrors(cuCtxSynchronize());
|
|
|
|
// Copy the device result vector in device memory to the host result vector
|
|
// in host memory.
|
|
printf("Copy output data from the CUDA device to the host memory\n");
|
|
checkCudaErrors(cuMemcpyDtoH(h_C, d_C, size));
|
|
|
|
// Verify that the result vector is correct
|
|
for (int i = 0; i < numElements; ++i) {
|
|
if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {
|
|
fprintf(stderr, "Result verification failed at element %d!\n", i);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
printf("Test PASSED\n");
|
|
|
|
// Free device global memory
|
|
checkCudaErrors(cuMemFree(d_A));
|
|
checkCudaErrors(cuMemFree(d_B));
|
|
checkCudaErrors(cuMemFree(d_C));
|
|
|
|
// Free host memory
|
|
free(h_A);
|
|
free(h_B);
|
|
free(h_C);
|
|
|
|
printf("Done\n");
|
|
|
|
return 0;
|
|
}
|