mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 21:55:47 +08:00
273 lines
8.0 KiB
C++
273 lines
8.0 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* This sample is a templatized version of the template project.
|
|
* It also shows how to correctly templatize dynamically allocated shared
|
|
* memory arrays.
|
|
* Host code.
|
|
*/
|
|
|
|
// System includes
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
#include <nvrtc_helper.h>
|
|
|
|
#ifndef MAX
|
|
#define MAX(a, b) (a > b ? a : b)
|
|
#endif
|
|
|
|
int g_TotalFailures = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// declaration, forward
|
|
|
|
template <class T>
|
|
void runTest(int argc, char **argv, int len);
|
|
|
|
template <class T>
|
|
void computeGold(T *reference, T *idata, const unsigned int len) {
|
|
const T T_len = static_cast<T>(len);
|
|
|
|
for (unsigned int i = 0; i < len; ++i) {
|
|
reference[i] = idata[i] * T_len;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char **argv) {
|
|
printf("> runTest<float,32>\n");
|
|
|
|
runTest<float>(argc, argv, 32);
|
|
|
|
printf("> runTest<int,64>\n");
|
|
|
|
runTest<int>(argc, argv, 64);
|
|
|
|
printf("\n[simpleTemplates_nvrtc] -> Test Results: %d Failures\n",
|
|
g_TotalFailures);
|
|
|
|
exit(g_TotalFailures == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
// To completely templatize runTest (below) with cutil, we need to use
|
|
// template specialization to wrap up CUTIL's array comparison and file writing
|
|
// functions for different types.
|
|
|
|
// Here's the generic wrapper for cutCompare*
|
|
template <class T>
|
|
class ArrayComparator {
|
|
public:
|
|
bool compare(const T *reference, T *data, unsigned int len) {
|
|
fprintf(stderr,
|
|
"Error: no comparison function implemented for this type\n");
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Here's the specialization for ints:
|
|
template <>
|
|
class ArrayComparator<int> {
|
|
public:
|
|
bool compare(const int *reference, int *data, unsigned int len) {
|
|
return compareData(reference, data, len, 0.15f, 0.0f);
|
|
}
|
|
};
|
|
|
|
// Here's the specialization for floats:
|
|
template <>
|
|
class ArrayComparator<float> {
|
|
public:
|
|
bool compare(const float *reference, float *data, unsigned int len) {
|
|
return compareData(reference, data, len, 0.15f, 0.15f);
|
|
}
|
|
};
|
|
|
|
// Here's the generic wrapper for cutWriteFile*
|
|
template <class T>
|
|
class ArrayFileWriter {
|
|
public:
|
|
bool write(const char *filename, T *data, unsigned int len, float epsilon) {
|
|
fprintf(stderr,
|
|
"Error: no file write function implemented for this type\n");
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Here's the specialization for ints:
|
|
template <>
|
|
class ArrayFileWriter<int> {
|
|
public:
|
|
bool write(const char *filename, int *data, unsigned int len, float epsilon) {
|
|
return sdkWriteFile(filename, data, len, epsilon, false);
|
|
}
|
|
};
|
|
|
|
// Here's the specialization for floats:
|
|
template <>
|
|
class ArrayFileWriter<float> {
|
|
public:
|
|
bool write(const char *filename, float *data, unsigned int len,
|
|
float epsilon) {
|
|
return sdkWriteFile(filename, data, len, epsilon, false);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
CUfunction getKernel(CUmodule in);
|
|
|
|
template <>
|
|
CUfunction getKernel<int>(CUmodule in) {
|
|
CUfunction kernel_addr;
|
|
checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testInt"));
|
|
|
|
return kernel_addr;
|
|
}
|
|
|
|
template <>
|
|
CUfunction getKernel<float>(CUmodule in) {
|
|
CUfunction kernel_addr;
|
|
checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testFloat"));
|
|
|
|
return kernel_addr;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Run a simple test for CUDA
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static bool moduleLoaded = false;
|
|
CUmodule module;
|
|
char *cubin, *kernel_file;
|
|
size_t cubinSize;
|
|
|
|
template <class T>
|
|
void runTest(int argc, char **argv, int len) {
|
|
if (!moduleLoaded) {
|
|
kernel_file = sdkFindFilePath("simpleTemplates_kernel.cu", argv[0]);
|
|
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
|
|
module = loadCUBIN(cubin, argc, argv);
|
|
moduleLoaded = true;
|
|
}
|
|
|
|
// create and start timer
|
|
StopWatchInterface *timer = NULL;
|
|
sdkCreateTimer(&timer);
|
|
|
|
// start the timer
|
|
sdkStartTimer(&timer);
|
|
|
|
unsigned int num_threads = len;
|
|
unsigned int mem_size = sizeof(float) * num_threads;
|
|
|
|
// allocate host memory
|
|
T *h_idata = (T *)malloc(mem_size);
|
|
|
|
// initialize the memory
|
|
for (unsigned int i = 0; i < num_threads; ++i) {
|
|
h_idata[i] = (T)i;
|
|
}
|
|
|
|
// allocate device memory
|
|
CUdeviceptr d_idata;
|
|
checkCudaErrors(cuMemAlloc(&d_idata, mem_size));
|
|
|
|
// copy host memory to device
|
|
checkCudaErrors(cuMemcpyHtoD(d_idata, h_idata, mem_size));
|
|
|
|
// allocate device memory for result
|
|
CUdeviceptr d_odata;
|
|
checkCudaErrors(cuMemAlloc(&d_odata, mem_size));
|
|
|
|
// setup execution parameters
|
|
dim3 grid(1, 1, 1);
|
|
dim3 threads(num_threads, 1, 1);
|
|
|
|
// execute the kernel
|
|
CUfunction kernel_addr = getKernel<T>(module);
|
|
|
|
void *arr[] = {(void *)&d_idata, (void *)&d_odata};
|
|
checkCudaErrors(
|
|
cuLaunchKernel(kernel_addr, grid.x, grid.y, grid.z, /* grid dim */
|
|
threads.x, threads.y, threads.z, /* block dim */
|
|
mem_size, 0, /* shared mem, stream */
|
|
&arr[0], /* arguments */
|
|
0));
|
|
|
|
// check if kernel execution generated and error
|
|
checkCudaErrors(cuCtxSynchronize());
|
|
|
|
// allocate mem for the result on host side
|
|
T *h_odata = (T *)malloc(mem_size);
|
|
|
|
// copy result from device to host
|
|
checkCudaErrors(cuMemcpyDtoH(h_odata, d_odata, sizeof(T) * num_threads));
|
|
|
|
sdkStopTimer(&timer);
|
|
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
|
sdkDeleteTimer(&timer);
|
|
|
|
// compute reference solution
|
|
T *reference = (T *)malloc(mem_size);
|
|
|
|
computeGold<T>(reference, h_idata, num_threads);
|
|
|
|
ArrayComparator<T> comparator;
|
|
ArrayFileWriter<T> writer;
|
|
|
|
// check result
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
|
|
// write file for regression test
|
|
writer.write("./data/regression.dat", h_odata, num_threads, 0.0f);
|
|
} else {
|
|
// custom output handling when no regression test running
|
|
// in this case check if the result is equivalent to the expected solution
|
|
bool res = comparator.compare(reference, h_odata, num_threads);
|
|
|
|
printf("Compare %s\n\n", (1 == res) ? "OK" : "MISMATCH");
|
|
|
|
g_TotalFailures += (1 != res);
|
|
}
|
|
|
|
// cleanup memory
|
|
free(h_idata);
|
|
free(h_odata);
|
|
free(reference);
|
|
checkCudaErrors(cuMemFree(d_idata));
|
|
checkCudaErrors(cuMemFree(d_odata));
|
|
}
|