mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 15:15:48 +08:00
170 lines
6.3 KiB
Plaintext
170 lines
6.3 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Walsh transforms belong to a class of generalized Fourier transformations.
|
|
* They have applications in various fields of electrical engineering
|
|
* and numeric theory. In this sample we demonstrate efficient implementation
|
|
* of naturally-ordered Walsh transform
|
|
* (also known as Walsh-Hadamard or Hadamard transform) in CUDA and its
|
|
* particular application to dyadic convolution computation.
|
|
* Refer to excellent Jorg Arndt's "Algorithms for Programmers" textbook
|
|
* http://www.jjj.de/fxt/fxtbook.pdf (Chapter 22)
|
|
*
|
|
* Victor Podlozhnyuk (vpodlozhnyuk@nvidia.com)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Reference CPU FWT
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void fwtCPU(float *h_Output, float *h_Input, int log2N);
|
|
extern "C" void slowWTcpu(float *h_Output, float *h_Input, int log2N);
|
|
extern "C" void dyadicConvolutionCPU(float *h_Result, float *h_Data,
|
|
float *h_Kernel, int log2dataN,
|
|
int log2kernelN);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPU FWT
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#include "fastWalshTransform_kernel.cuh"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Data configuration
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
const int log2Kernel = 7;
|
|
const int log2Data = 23;
|
|
|
|
const int dataN = 1 << log2Data;
|
|
const int kernelN = 1 << log2Kernel;
|
|
|
|
const int DATA_SIZE = dataN * sizeof(float);
|
|
const int KERNEL_SIZE = kernelN * sizeof(float);
|
|
|
|
const double NOPS = 3.0 * (double)dataN * (double)log2Data / 2.0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char *argv[]) {
|
|
float *h_Data, *h_Kernel, *h_ResultCPU, *h_ResultGPU;
|
|
|
|
float *d_Data, *d_Kernel;
|
|
|
|
double delta, ref, sum_delta2, sum_ref2, L2norm, gpuTime;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
int i;
|
|
|
|
printf("%s Starting...\n\n", argv[0]);
|
|
|
|
// use command-line specified CUDA device, otherwise use device with highest
|
|
// Gflops/s
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Initializing data...\n");
|
|
printf("...allocating CPU memory\n");
|
|
h_Kernel = (float *)malloc(KERNEL_SIZE);
|
|
h_Data = (float *)malloc(DATA_SIZE);
|
|
h_ResultCPU = (float *)malloc(DATA_SIZE);
|
|
h_ResultGPU = (float *)malloc(DATA_SIZE);
|
|
printf("...allocating GPU memory\n");
|
|
checkCudaErrors(cudaMalloc((void **)&d_Kernel, DATA_SIZE));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Data, DATA_SIZE));
|
|
|
|
printf("...generating data\n");
|
|
printf("Data length: %i; kernel length: %i\n", dataN, kernelN);
|
|
srand(2007);
|
|
|
|
for (i = 0; i < kernelN; i++) {
|
|
h_Kernel[i] = (float)rand() / (float)RAND_MAX;
|
|
}
|
|
|
|
for (i = 0; i < dataN; i++) {
|
|
h_Data[i] = (float)rand() / (float)RAND_MAX;
|
|
}
|
|
|
|
checkCudaErrors(cudaMemset(d_Kernel, 0, DATA_SIZE));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_Kernel, h_Kernel, KERNEL_SIZE, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_Data, h_Data, DATA_SIZE, cudaMemcpyHostToDevice));
|
|
|
|
printf("Running GPU dyadic convolution using Fast Walsh Transform...\n");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
fwtBatchGPU(d_Data, 1, log2Data);
|
|
fwtBatchGPU(d_Kernel, 1, log2Data);
|
|
modulateGPU(d_Data, d_Kernel, dataN);
|
|
fwtBatchGPU(d_Data, 1, log2Data);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer);
|
|
printf("GPU time: %f ms; GOP/s: %f\n", gpuTime,
|
|
NOPS / (gpuTime * 0.001 * 1E+9));
|
|
|
|
printf("Reading back GPU results...\n");
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_ResultGPU, d_Data, DATA_SIZE, cudaMemcpyDeviceToHost));
|
|
|
|
printf("Running straightforward CPU dyadic convolution...\n");
|
|
dyadicConvolutionCPU(h_ResultCPU, h_Data, h_Kernel, log2Data, log2Kernel);
|
|
|
|
printf("Comparing the results...\n");
|
|
sum_delta2 = 0;
|
|
sum_ref2 = 0;
|
|
|
|
for (i = 0; i < dataN; i++) {
|
|
delta = h_ResultCPU[i] - h_ResultGPU[i];
|
|
ref = h_ResultCPU[i];
|
|
sum_delta2 += delta * delta;
|
|
sum_ref2 += ref * ref;
|
|
}
|
|
|
|
L2norm = sqrt(sum_delta2 / sum_ref2);
|
|
|
|
printf("Shutting down...\n");
|
|
sdkDeleteTimer(&hTimer);
|
|
checkCudaErrors(cudaFree(d_Data));
|
|
checkCudaErrors(cudaFree(d_Kernel));
|
|
free(h_ResultGPU);
|
|
free(h_ResultCPU);
|
|
free(h_Data);
|
|
free(h_Kernel);
|
|
|
|
printf("L2 norm: %E\n", L2norm);
|
|
printf(L2norm < 1e-6 ? "Test passed\n" : "Test failed!\n");
|
|
}
|