mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:15:49 +08:00
189 lines
6.3 KiB
C++
189 lines
6.3 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample evaluates fair call price for a
|
|
* given set of European options under binomial model.
|
|
* See supplied whitepaper for more explanations.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
#include "binomialOptions_common.h"
|
|
#include "realtype.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Black-Scholes formula for binomial tree results validation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void BlackScholesCall(real &callResult, TOptionData optionData);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process single option on CPU
|
|
// Note that CPU code is for correctness testing only and not for benchmarking.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of OptN options on GPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
|
|
int optN);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Helper function, returning uniformly distributed
|
|
// random float in [low, high] range
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
real randData(real low, real high) {
|
|
real t = (real)rand() / (real)RAND_MAX;
|
|
return ((real)1.0 - t) * low + t * high;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf("[%s] - Starting...\n", argv[0]);
|
|
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
const int OPT_N = MAX_OPTIONS;
|
|
|
|
TOptionData optionData[MAX_OPTIONS];
|
|
real callValueBS[MAX_OPTIONS], callValueGPU[MAX_OPTIONS],
|
|
callValueCPU[MAX_OPTIONS];
|
|
|
|
real sumDelta, sumRef, gpuTime, errorVal;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
int i;
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Generating input data...\n");
|
|
// Generate options set
|
|
srand(123);
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
optionData[i].S = randData(5.0f, 30.0f);
|
|
optionData[i].X = randData(1.0f, 100.0f);
|
|
optionData[i].T = randData(0.25f, 10.0f);
|
|
optionData[i].R = 0.06f;
|
|
optionData[i].V = 0.10f;
|
|
BlackScholesCall(callValueBS[i], optionData[i]);
|
|
}
|
|
|
|
printf("Running GPU binomial tree...\n");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
binomialOptionsGPU(callValueGPU, optionData, OPT_N);
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer);
|
|
printf("Options count : %i \n", OPT_N);
|
|
printf("Time steps : %i \n", NUM_STEPS);
|
|
printf("binomialOptionsGPU() time: %f msec\n", gpuTime);
|
|
printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001));
|
|
|
|
printf("Running CPU binomial tree...\n");
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
binomialOptionsCPU(callValueCPU[i], optionData[i]);
|
|
}
|
|
|
|
printf("Comparing the results...\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
printf("GPU binomial vs. Black-Scholes\n");
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueBS[i] - callValueGPU[i]);
|
|
sumRef += fabs(callValueBS[i]);
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", (double)(sumDelta / sumRef));
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("CPU binomial vs. Black-Scholes\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueBS[i] - callValueCPU[i]);
|
|
sumRef += fabs(callValueBS[i]);
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", sumDelta / sumRef);
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("CPU binomial vs. GPU binomial\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueGPU[i] - callValueCPU[i]);
|
|
sumRef += callValueCPU[i];
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", errorVal = sumDelta / sumRef);
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("Shutting down...\n");
|
|
|
|
sdkDeleteTimer(&hTimer);
|
|
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n\n");
|
|
|
|
if (errorVal > 5e-4) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("Test passed\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|