mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-29 04:49:18 +08:00
401 lines
13 KiB
C++
401 lines
13 KiB
C++
/*
|
|
* Copyright 2015 NVIDIA Corporation. All rights reserved.
|
|
*
|
|
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
|
* with this source code for terms and conditions that govern your use of
|
|
* this software. Any use, reproduction, disclosure, or distribution of
|
|
* this software and related documentation outside the terms of the EULA
|
|
* is strictly prohibited.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "cusolverSp.h"
|
|
|
|
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "helper_cuda.h"
|
|
#include "helper_cusolver.h"
|
|
|
|
template <typename T_ELEM>
|
|
int loadMMSparseMatrix(
|
|
char *filename,
|
|
char elem_type,
|
|
bool csrFormat,
|
|
int *m,
|
|
int *n,
|
|
int *nnz,
|
|
T_ELEM **aVal,
|
|
int **aRowInd,
|
|
int **aColInd,
|
|
int extendSymMatrix);
|
|
|
|
void UsageSP(void)
|
|
{
|
|
printf( "<options>\n");
|
|
printf( "-h : display this help\n");
|
|
printf( "-file=<filename> : filename containing a matrix in MM format\n");
|
|
printf( "-device=<device_id> : <device_id> if want to run on specific GPU\n");
|
|
|
|
exit( 0 );
|
|
}
|
|
|
|
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts)
|
|
{
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "-h"))
|
|
{
|
|
UsageSP();
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "file"))
|
|
{
|
|
char *fileName = 0;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
|
|
|
|
if (fileName)
|
|
{
|
|
opts.sparse_mat_filename = fileName;
|
|
}
|
|
else
|
|
{
|
|
printf("\nIncorrect filename passed to -file \n ");
|
|
UsageSP();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int main (int argc, char *argv[])
|
|
{
|
|
struct testOpts opts;
|
|
cusolverSpHandle_t cusolverSpH = NULL; // reordering, permutation and 1st LU factorization
|
|
cusparseHandle_t cusparseH = NULL; // residual evaluation
|
|
cudaStream_t stream = NULL;
|
|
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
|
|
|
|
csrcholInfoHost_t h_info = NULL; // opaque info structure for LU with parital pivoting
|
|
csrcholInfo_t d_info = NULL; // opaque info structure for LU with parital pivoting
|
|
|
|
int rowsA = 0; // number of rows of A
|
|
int colsA = 0; // number of columns of A
|
|
int nnzA = 0; // number of nonzeros of A
|
|
int baseA = 0; // base index in CSR format
|
|
|
|
// CSR(A) from I/O
|
|
int *h_csrRowPtrA = NULL; // <int> n+1
|
|
int *h_csrColIndA = NULL; // <int> nnzA
|
|
double *h_csrValA = NULL; // <double> nnzA
|
|
|
|
double *h_x = NULL; // <double> n, x = A \ b
|
|
double *h_b = NULL; // <double> n, b = ones(m,1)
|
|
double *h_r = NULL; // <double> n, r = b - A*x
|
|
|
|
size_t size_internal = 0;
|
|
size_t size_chol = 0; // size of working space for csrlu
|
|
void *buffer_cpu = NULL; // working space for Cholesky
|
|
void *buffer_gpu = NULL; // working space for Cholesky
|
|
|
|
int *d_csrRowPtrA = NULL; // <int> n+1
|
|
int *d_csrColIndA = NULL; // <int> nnzA
|
|
double *d_csrValA = NULL; // <double> nnzA
|
|
double *d_x = NULL; // <double> n, x = A \ b
|
|
double *d_b = NULL; // <double> n, a copy of h_b
|
|
double *d_r = NULL; // <double> n, r = b - A*x
|
|
|
|
// the constants used in residual evaluation, r = b - A*x
|
|
const double minus_one = -1.0;
|
|
const double one = 1.0;
|
|
// the constant used in cusolverSp
|
|
// singularity is -1 if A is invertible under tol
|
|
// tol determines the condition of singularity
|
|
int singularity = 0;
|
|
const double tol = 1.e-14;
|
|
|
|
double x_inf = 0.0; // |x|
|
|
double r_inf = 0.0; // |r|
|
|
double A_inf = 0.0; // |A|
|
|
int errors = 0;
|
|
|
|
parseCommandLineArguments(argc, argv, opts);
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (opts.sparse_mat_filename == NULL)
|
|
{
|
|
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]);
|
|
if (opts.sparse_mat_filename != NULL)
|
|
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
|
|
else
|
|
printf("Could not find lap2D_5pt_n100.mtx\n");
|
|
}
|
|
else
|
|
{
|
|
printf("Using input file [%s]\n", opts.sparse_mat_filename);
|
|
}
|
|
|
|
printf("step 1: read matrix market format\n");
|
|
|
|
if (opts.sparse_mat_filename)
|
|
{
|
|
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true , &rowsA, &colsA,
|
|
&nnzA, &h_csrValA, &h_csrRowPtrA, &h_csrColIndA, true))
|
|
{
|
|
return 1;
|
|
}
|
|
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "Error: input matrix is not provided\n");
|
|
return 1;
|
|
}
|
|
|
|
if ( rowsA != colsA )
|
|
{
|
|
fprintf(stderr, "Error: only support square matrix\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA, nnzA, baseA);
|
|
|
|
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
|
|
|
|
checkCudaErrors(cusparseCreate(&cusparseH));
|
|
|
|
checkCudaErrors(cudaStreamCreate(&stream));
|
|
|
|
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
|
|
|
|
checkCudaErrors(cusparseSetStream(cusparseH, stream));
|
|
|
|
checkCudaErrors(cusparseCreateMatDescr(&descrA));
|
|
|
|
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
if (baseA)
|
|
{
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
|
|
}
|
|
else
|
|
{
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
|
|
}
|
|
|
|
h_x = (double*)malloc(sizeof(double)*colsA);
|
|
h_b = (double*)malloc(sizeof(double)*rowsA);
|
|
h_r = (double*)malloc(sizeof(double)*rowsA);
|
|
|
|
assert(NULL != h_x);
|
|
assert(NULL != h_b);
|
|
assert(NULL != h_r);
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrRowPtrA, sizeof(int)*(rowsA+1)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int)*nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrValA , sizeof(double)*nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double)*colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double)*rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double)*rowsA));
|
|
|
|
for(int row = 0 ; row < rowsA ; row++)
|
|
{
|
|
h_b[row] = 1.0;
|
|
}
|
|
|
|
printf("step 2: create opaque info structure\n");
|
|
checkCudaErrors(cusolverSpCreateCsrcholInfoHost(&h_info));
|
|
|
|
printf("step 3: analyze chol(A) to know structure of L\n");
|
|
checkCudaErrors(cusolverSpXcsrcholAnalysisHost(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, h_csrRowPtrA, h_csrColIndA,
|
|
h_info));
|
|
|
|
printf("step 4: workspace for chol(A)\n");
|
|
checkCudaErrors(cusolverSpDcsrcholBufferInfoHost(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA,
|
|
h_info,
|
|
&size_internal,
|
|
&size_chol));
|
|
|
|
if (buffer_cpu)
|
|
{
|
|
free(buffer_cpu);
|
|
}
|
|
buffer_cpu = (void*)malloc(sizeof(char)*size_chol);
|
|
assert(NULL != buffer_cpu);
|
|
|
|
printf("step 5: compute A = L*L^T \n");
|
|
checkCudaErrors(cusolverSpDcsrcholFactorHost(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA,
|
|
h_info,
|
|
buffer_cpu));
|
|
|
|
printf("step 6: check if the matrix is singular \n");
|
|
checkCudaErrors(cusolverSpDcsrcholZeroPivotHost(
|
|
cusolverSpH, h_info, tol, &singularity));
|
|
|
|
if ( 0 <= singularity)
|
|
{
|
|
fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity);
|
|
return 1;
|
|
}
|
|
|
|
printf("step 7: solve A*x = b \n");
|
|
checkCudaErrors(cusolverSpDcsrcholSolveHost(
|
|
cusolverSpH, rowsA, h_b, h_x, h_info, buffer_cpu));
|
|
|
|
printf("step 8: evaluate residual r = b - A*x (result on CPU)\n");
|
|
// use GPU gemv to compute r = b - A*x
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_x, h_x, sizeof(double)*colsA, cudaMemcpyHostToDevice));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
if (baseA)
|
|
{
|
|
checkCudaErrors(cusparseCreateCsr(
|
|
&matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
|
|
}
|
|
else
|
|
{
|
|
checkCudaErrors(cusparseCreateCsr(
|
|
&matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
|
|
}
|
|
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
|
|
&one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
checkCudaErrors(cusparseSpMV(
|
|
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
|
|
&one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA);
|
|
|
|
printf("(CPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(CPU) |A| = %E \n", A_inf);
|
|
printf("(CPU) |x| = %E \n", x_inf);
|
|
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf));
|
|
|
|
printf("step 9: create opaque info structure\n");
|
|
checkCudaErrors(cusolverSpCreateCsrcholInfo(&d_info));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_b, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
|
|
|
|
printf("step 10: analyze chol(A) to know structure of L\n");
|
|
checkCudaErrors(cusolverSpXcsrcholAnalysis(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, d_csrRowPtrA, d_csrColIndA,
|
|
d_info));
|
|
|
|
printf("step 11: workspace for chol(A)\n");
|
|
checkCudaErrors(cusolverSpDcsrcholBufferInfo(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
|
|
d_info,
|
|
&size_internal,
|
|
&size_chol));
|
|
|
|
if (buffer_gpu) {
|
|
checkCudaErrors(cudaFree(buffer_gpu));
|
|
}
|
|
checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char)*size_chol));
|
|
|
|
printf("step 12: compute A = L*L^T \n");
|
|
checkCudaErrors(cusolverSpDcsrcholFactor(
|
|
cusolverSpH, rowsA, nnzA,
|
|
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
|
|
d_info,
|
|
buffer_gpu));
|
|
|
|
printf("step 13: check if the matrix is singular \n");
|
|
checkCudaErrors(cusolverSpDcsrcholZeroPivot(
|
|
cusolverSpH, d_info, tol, &singularity));
|
|
|
|
if ( 0 <= singularity){
|
|
fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity);
|
|
return 1;
|
|
}
|
|
|
|
printf("step 14: solve A*x = b \n");
|
|
checkCudaErrors(cusolverSpDcsrcholSolve(
|
|
cusolverSpH, rowsA, d_b, d_x, d_info, buffer_gpu));
|
|
|
|
checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cusparseSpMV(
|
|
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
|
|
&one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
|
|
printf("(GPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf));
|
|
|
|
|
|
if (cusolverSpH) { checkCudaErrors(cusolverSpDestroy(cusolverSpH)); }
|
|
if (cusparseH ) { checkCudaErrors(cusparseDestroy(cusparseH)); }
|
|
if (stream ) { checkCudaErrors(cudaStreamDestroy(stream)); }
|
|
if (descrA ) { checkCudaErrors(cusparseDestroyMatDescr(descrA)); }
|
|
if (h_info ) { checkCudaErrors(cusolverSpDestroyCsrcholInfoHost(h_info)); }
|
|
if (d_info ) { checkCudaErrors(cusolverSpDestroyCsrcholInfo(d_info)); }
|
|
if (matA ) { checkCudaErrors(cusparseDestroySpMat(matA)); }
|
|
if (vecx ) { checkCudaErrors(cusparseDestroyDnVec(vecx)); }
|
|
if (vecAx ) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); }
|
|
|
|
if (h_csrValA ) { free(h_csrValA); }
|
|
if (h_csrRowPtrA) { free(h_csrRowPtrA); }
|
|
if (h_csrColIndA) { free(h_csrColIndA); }
|
|
|
|
if (h_x ) { free(h_x); }
|
|
if (h_b ) { free(h_b); }
|
|
if (h_r ) { free(h_r); }
|
|
|
|
if (buffer_cpu) { free(buffer_cpu); }
|
|
if (buffer_gpu) { checkCudaErrors(cudaFree(buffer_gpu)); }
|
|
|
|
if (d_csrValA ) { checkCudaErrors(cudaFree(d_csrValA)); }
|
|
if (d_csrRowPtrA) { checkCudaErrors(cudaFree(d_csrRowPtrA)); }
|
|
if (d_csrColIndA) { checkCudaErrors(cudaFree(d_csrColIndA)); }
|
|
if (d_x) { checkCudaErrors(cudaFree(d_x)); }
|
|
if (d_b) { checkCudaErrors(cudaFree(d_b)); }
|
|
if (d_r) { checkCudaErrors(cudaFree(d_r)); }
|
|
|
|
return 0;
|
|
}
|
|
|