mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-29 04:29:18 +08:00
281 lines
9.8 KiB
Plaintext
281 lines
9.8 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
**************************************************************************
|
|
* \file dct8x8_kernel2.cu
|
|
* \brief Contains 2nd kernel implementations of DCT and IDCT routines, used in
|
|
* JPEG internal data processing. Optimized device code.
|
|
*
|
|
* This code implements traditional approach to forward and inverse Discrete
|
|
* Cosine Transform to blocks of image pixels (of 8x8 size), as in JPEG standard.
|
|
* The data processing is done using floating point representation.
|
|
* The routine that performs quantization of coefficients can be found in
|
|
* dct8x8_kernel_quantization.cu file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
#include "Common.h"
|
|
|
|
// Used in forward and inverse DCT
|
|
#define C_a 1.387039845322148f //!< a = (2^0.5) * cos( pi / 16);
|
|
#define C_b 1.306562964876377f //!< b = (2^0.5) * cos( pi / 8);
|
|
#define C_c 1.175875602419359f //!< c = (2^0.5) * cos(3 * pi / 16);
|
|
#define C_d 0.785694958387102f //!< d = (2^0.5) * cos(5 * pi / 16);
|
|
#define C_e 0.541196100146197f //!< e = (2^0.5) * cos(3 * pi / 8);
|
|
#define C_f 0.275899379282943f //!< f = (2^0.5) * cos(7 * pi / 16);
|
|
|
|
/**
|
|
* Normalization constant that is used in forward and inverse DCT
|
|
*/
|
|
#define C_norm 0.3535533905932737f // 1 / (8^0.5)
|
|
|
|
/**
|
|
* Width of data block (2nd kernel)
|
|
*/
|
|
#define KER2_BLOCK_WIDTH 32
|
|
|
|
/**
|
|
* Height of data block (2nd kernel)
|
|
*/
|
|
#define KER2_BLOCK_HEIGHT 16
|
|
|
|
/**
|
|
* LOG2 of width of data block (2nd kernel)
|
|
*/
|
|
#define KER2_BW_LOG2 5
|
|
|
|
/**
|
|
* LOG2 of height of data block (2nd kernel)
|
|
*/
|
|
#define KER2_BH_LOG2 4
|
|
|
|
/**
|
|
* Stride of shared memory buffer (2nd kernel)
|
|
*/
|
|
#define KER2_SMEMBLOCK_STRIDE (KER2_BLOCK_WIDTH + 1)
|
|
|
|
/**
|
|
**************************************************************************
|
|
* Performs in-place DCT of vector of 8 elements.
|
|
*
|
|
* \param Vect0 [IN/OUT] - Pointer to the first element of vector
|
|
* \param Step [IN/OUT] - Value to add to ptr to access other elements
|
|
*
|
|
* \return None
|
|
*/
|
|
__device__ void CUDAsubroutineInplaceDCTvector(float *Vect0, int Step) {
|
|
float *Vect1 = Vect0 + Step;
|
|
float *Vect2 = Vect1 + Step;
|
|
float *Vect3 = Vect2 + Step;
|
|
float *Vect4 = Vect3 + Step;
|
|
float *Vect5 = Vect4 + Step;
|
|
float *Vect6 = Vect5 + Step;
|
|
float *Vect7 = Vect6 + Step;
|
|
|
|
float X07P = (*Vect0) + (*Vect7);
|
|
float X16P = (*Vect1) + (*Vect6);
|
|
float X25P = (*Vect2) + (*Vect5);
|
|
float X34P = (*Vect3) + (*Vect4);
|
|
|
|
float X07M = (*Vect0) - (*Vect7);
|
|
float X61M = (*Vect6) - (*Vect1);
|
|
float X25M = (*Vect2) - (*Vect5);
|
|
float X43M = (*Vect4) - (*Vect3);
|
|
|
|
float X07P34PP = X07P + X34P;
|
|
float X07P34PM = X07P - X34P;
|
|
float X16P25PP = X16P + X25P;
|
|
float X16P25PM = X16P - X25P;
|
|
|
|
(*Vect0) = C_norm * (X07P34PP + X16P25PP);
|
|
(*Vect2) = C_norm * (C_b * X07P34PM + C_e * X16P25PM);
|
|
(*Vect4) = C_norm * (X07P34PP - X16P25PP);
|
|
(*Vect6) = C_norm * (C_e * X07P34PM - C_b * X16P25PM);
|
|
|
|
(*Vect1) = C_norm * (C_a * X07M - C_c * X61M + C_d * X25M - C_f * X43M);
|
|
(*Vect3) = C_norm * (C_c * X07M + C_f * X61M - C_a * X25M + C_d * X43M);
|
|
(*Vect5) = C_norm * (C_d * X07M + C_a * X61M + C_f * X25M - C_c * X43M);
|
|
(*Vect7) = C_norm * (C_f * X07M + C_d * X61M + C_c * X25M + C_a * X43M);
|
|
}
|
|
|
|
/**
|
|
**************************************************************************
|
|
* Performs in-place IDCT of vector of 8 elements.
|
|
*
|
|
* \param Vect0 [IN/OUT] - Pointer to the first element of vector
|
|
* \param Step [IN/OUT] - Value to add to ptr to access other elements
|
|
*
|
|
* \return None
|
|
*/
|
|
__device__ void CUDAsubroutineInplaceIDCTvector(float *Vect0, int Step) {
|
|
float *Vect1 = Vect0 + Step;
|
|
float *Vect2 = Vect1 + Step;
|
|
float *Vect3 = Vect2 + Step;
|
|
float *Vect4 = Vect3 + Step;
|
|
float *Vect5 = Vect4 + Step;
|
|
float *Vect6 = Vect5 + Step;
|
|
float *Vect7 = Vect6 + Step;
|
|
|
|
float Y04P = (*Vect0) + (*Vect4);
|
|
float Y2b6eP = C_b * (*Vect2) + C_e * (*Vect6);
|
|
|
|
float Y04P2b6ePP = Y04P + Y2b6eP;
|
|
float Y04P2b6ePM = Y04P - Y2b6eP;
|
|
float Y7f1aP3c5dPP =
|
|
C_f * (*Vect7) + C_a * (*Vect1) + C_c * (*Vect3) + C_d * (*Vect5);
|
|
float Y7a1fM3d5cMP =
|
|
C_a * (*Vect7) - C_f * (*Vect1) + C_d * (*Vect3) - C_c * (*Vect5);
|
|
|
|
float Y04M = (*Vect0) - (*Vect4);
|
|
float Y2e6bM = C_e * (*Vect2) - C_b * (*Vect6);
|
|
|
|
float Y04M2e6bMP = Y04M + Y2e6bM;
|
|
float Y04M2e6bMM = Y04M - Y2e6bM;
|
|
float Y1c7dM3f5aPM =
|
|
C_c * (*Vect1) - C_d * (*Vect7) - C_f * (*Vect3) - C_a * (*Vect5);
|
|
float Y1d7cP3a5fMM =
|
|
C_d * (*Vect1) + C_c * (*Vect7) - C_a * (*Vect3) + C_f * (*Vect5);
|
|
|
|
(*Vect0) = C_norm * (Y04P2b6ePP + Y7f1aP3c5dPP);
|
|
(*Vect7) = C_norm * (Y04P2b6ePP - Y7f1aP3c5dPP);
|
|
(*Vect4) = C_norm * (Y04P2b6ePM + Y7a1fM3d5cMP);
|
|
(*Vect3) = C_norm * (Y04P2b6ePM - Y7a1fM3d5cMP);
|
|
|
|
(*Vect1) = C_norm * (Y04M2e6bMP + Y1c7dM3f5aPM);
|
|
(*Vect5) = C_norm * (Y04M2e6bMM - Y1d7cP3a5fMM);
|
|
(*Vect2) = C_norm * (Y04M2e6bMM + Y1d7cP3a5fMM);
|
|
(*Vect6) = C_norm * (Y04M2e6bMP - Y1c7dM3f5aPM);
|
|
}
|
|
|
|
/**
|
|
**************************************************************************
|
|
* Performs 8x8 block-wise Forward Discrete Cosine Transform of the given
|
|
* image plane and outputs result to the array of coefficients. 2nd
|
|
*implementation.
|
|
* This kernel is designed to process image by blocks of blocks8x8 that
|
|
* utilizes maximum warps capacity, assuming that it is enough of 8 threads
|
|
* per block8x8.
|
|
*
|
|
* \param SrcDst [OUT] - Coefficients plane
|
|
* \param ImgStride [IN] - Stride of SrcDst
|
|
*
|
|
* \return None
|
|
*/
|
|
|
|
__global__ void CUDAkernel2DCT(float *dst, float *src, int ImgStride) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
|
|
__shared__ float block[KER2_BLOCK_HEIGHT * KER2_SMEMBLOCK_STRIDE];
|
|
|
|
int OffsThreadInRow = threadIdx.y * BLOCK_SIZE + threadIdx.x;
|
|
int OffsThreadInCol = threadIdx.z * BLOCK_SIZE;
|
|
src += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) +
|
|
blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow;
|
|
dst += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) +
|
|
blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow;
|
|
float *bl_ptr =
|
|
block + OffsThreadInCol * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow;
|
|
|
|
#pragma unroll
|
|
|
|
for (unsigned int i = 0; i < BLOCK_SIZE; i++)
|
|
bl_ptr[i * KER2_SMEMBLOCK_STRIDE] = src[i * ImgStride];
|
|
|
|
cg::sync(cta);
|
|
// process rows
|
|
CUDAsubroutineInplaceDCTvector(
|
|
block + (OffsThreadInCol + threadIdx.x) * KER2_SMEMBLOCK_STRIDE +
|
|
OffsThreadInRow - threadIdx.x,
|
|
1);
|
|
|
|
cg::sync(cta);
|
|
// process columns
|
|
CUDAsubroutineInplaceDCTvector(bl_ptr, KER2_SMEMBLOCK_STRIDE);
|
|
|
|
cg::sync(cta);
|
|
for (unsigned int i = 0; i < BLOCK_SIZE; i++)
|
|
dst[i * ImgStride] = bl_ptr[i * KER2_SMEMBLOCK_STRIDE];
|
|
}
|
|
|
|
/**
|
|
**************************************************************************
|
|
* Performs 8x8 block-wise Inverse Discrete Cosine Transform of the given
|
|
* coefficients plane and outputs result to the image. 2nd implementation.
|
|
* This kernel is designed to process image by blocks of blocks8x8 that
|
|
* utilizes maximum warps capacity, assuming that it is enough of 8 threads
|
|
* per block8x8.
|
|
*
|
|
* \param SrcDst [OUT] - Coefficients plane
|
|
* \param ImgStride [IN] - Stride of SrcDst
|
|
*
|
|
* \return None
|
|
*/
|
|
|
|
__global__ void CUDAkernel2IDCT(float *dst, float *src, int ImgStride) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
|
|
__shared__ float block[KER2_BLOCK_HEIGHT * KER2_SMEMBLOCK_STRIDE];
|
|
|
|
int OffsThreadInRow = threadIdx.y * BLOCK_SIZE + threadIdx.x;
|
|
int OffsThreadInCol = threadIdx.z * BLOCK_SIZE;
|
|
src += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) +
|
|
blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow;
|
|
dst += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) +
|
|
blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow;
|
|
float *bl_ptr =
|
|
block + OffsThreadInCol * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow;
|
|
|
|
#pragma unroll
|
|
|
|
for (unsigned int i = 0; i < BLOCK_SIZE; i++)
|
|
bl_ptr[i * KER2_SMEMBLOCK_STRIDE] = src[i * ImgStride];
|
|
|
|
cg::sync(cta);
|
|
// process rows
|
|
CUDAsubroutineInplaceIDCTvector(
|
|
block + (OffsThreadInCol + threadIdx.x) * KER2_SMEMBLOCK_STRIDE +
|
|
OffsThreadInRow - threadIdx.x,
|
|
1);
|
|
|
|
cg::sync(cta);
|
|
// process columns
|
|
CUDAsubroutineInplaceIDCTvector(bl_ptr, KER2_SMEMBLOCK_STRIDE);
|
|
|
|
cg::sync(cta);
|
|
|
|
for (unsigned int i = 0; i < BLOCK_SIZE; i++)
|
|
dst[i * ImgStride] = bl_ptr[i * KER2_SMEMBLOCK_STRIDE];
|
|
}
|