cuda-samples/Samples/simpleDrvRuntime/simpleDrvRuntime.cpp
2021-04-16 11:54:26 +05:30

227 lines
6.8 KiB
C++

/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Vector addition: C = A + B.
*
* This sample is a very basic sample that implements element by element
* vector addition. It loads a cuda fatbinary and runs vector addition kernel.
* Uses both Driver and Runtime CUDA APIs for different purposes.
*/
// Includes
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <iostream>
// includes, project
#include <helper_cuda.h>
#include <helper_functions.h>
// includes, CUDA
#include <builtin_types.h>
using namespace std;
#ifndef FATBIN_FILE
#define FATBIN_FILE "vectorAdd_kernel64.fatbin"
#endif
// Variables
float *h_A;
float *h_B;
float *h_C;
float *d_A;
float *d_B;
float *d_C;
// Functions
int CleanupNoFailure(CUcontext &cuContext);
void RandomInit(float *, int);
bool findModulePath(const char *, string &, char **, ostringstream &);
static void check(CUresult result, char const *const func,
const char *const file, int const line) {
if (result) {
fprintf(stderr, "CUDA error at %s:%d code=%d \"%s\" \n", file, line,
static_cast<unsigned int>(result), func);
exit(EXIT_FAILURE);
}
}
#define checkCudaDrvErrors(val) check((val), #val, __FILE__, __LINE__)
// Host code
int main(int argc, char **argv) {
printf("simpleDrvRuntime..\n");
int N = 50000, devID = 0;
size_t size = N * sizeof(float);
CUdevice cuDevice;
CUfunction vecAdd_kernel;
CUmodule cuModule = 0;
CUcontext cuContext;
// Initialize
checkCudaDrvErrors(cuInit(0));
cuDevice = findCudaDevice(argc, (const char **)argv);
// Create context
checkCudaDrvErrors(cuCtxCreate(&cuContext, 0, cuDevice));
// first search for the module path before we load the results
string module_path;
ostringstream fatbin;
if (!findModulePath(FATBIN_FILE, module_path, argv, fatbin)) {
exit(EXIT_FAILURE);
} else {
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
}
if (!fatbin.str().size()) {
printf("fatbin file empty. exiting..\n");
exit(EXIT_FAILURE);
}
// Create module from binary file (FATBIN)
checkCudaDrvErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str()));
// Get function handle from module
checkCudaDrvErrors(
cuModuleGetFunction(&vecAdd_kernel, cuModule, "VecAdd_kernel"));
// Allocate input vectors h_A and h_B in host memory
checkCudaErrors(cudaMallocHost(&h_A, size));
checkCudaErrors(cudaMallocHost(&h_B, size));
checkCudaErrors(cudaMallocHost(&h_C, size));
// Initialize input vectors
RandomInit(h_A, N);
RandomInit(h_B, N);
// Allocate vectors in device memory
checkCudaErrors(cudaMalloc((void **)(&d_A), size));
checkCudaErrors(cudaMalloc((void **)(&d_B), size));
checkCudaErrors(cudaMalloc((void **)(&d_C), size));
cudaStream_t stream;
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
// Copy vectors from host memory to device memory
checkCudaErrors(
cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, stream));
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
void *args[] = {&d_A, &d_B, &d_C, &N};
// Launch the CUDA kernel
checkCudaDrvErrors(cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1,
threadsPerBlock, 1, 1, 0, stream, args,
NULL));
// Copy result from device memory to host memory
// h_C contains the result in host memory
checkCudaErrors(
cudaMemcpyAsync(h_C, d_C, size, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
// Verify result
int i;
for (i = 0; i < N; ++i) {
float sum = h_A[i] + h_B[i];
if (fabs(h_C[i] - sum) > 1e-7f) {
break;
}
}
checkCudaDrvErrors(cuModuleUnload(cuModule));
CleanupNoFailure(cuContext);
printf("%s\n", (i == N) ? "Result = PASS" : "Result = FAIL");
exit((i == N) ? EXIT_SUCCESS : EXIT_FAILURE);
}
int CleanupNoFailure(CUcontext &cuContext) {
// Free device memory
checkCudaErrors(cudaFree(d_A));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_C));
// Free host memory
if (h_A) {
checkCudaErrors(cudaFreeHost(h_A));
}
if (h_B) {
checkCudaErrors(cudaFreeHost(h_B));
}
if (h_C) {
checkCudaErrors(cudaFreeHost(h_C));
}
checkCudaDrvErrors(cuCtxDestroy(cuContext));
return EXIT_SUCCESS;
}
// Allocates an array with random float entries.
void RandomInit(float *data, int n) {
for (int i = 0; i < n; ++i) {
data[i] = rand() / (float)RAND_MAX;
}
}
bool inline findModulePath(const char *module_file, string &module_path,
char **argv, ostringstream &ostrm) {
char *actual_path = sdkFindFilePath(module_file, argv[0]);
if (actual_path) {
module_path = actual_path;
} else {
printf("> findModulePath file not found: <%s> \n", module_file);
return false;
}
if (module_path.empty()) {
printf("> findModulePath could not find file: <%s> \n", module_file);
return false;
} else {
printf("> findModulePath found file at <%s>\n", module_path.c_str());
if (module_path.rfind("fatbin") != string::npos) {
ifstream fileIn(module_path.c_str(), ios::binary);
ostrm << fileIn.rdbuf();
}
return true;
}
}