cuda-samples/Samples/2_Concepts_and_Techniques/particles/particleSystem.cpp
2022-01-13 11:35:24 +05:30

520 lines
14 KiB
C++

/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
// OpenGL Graphics includes
#define HELPERGL_EXTERN_GL_FUNC_IMPLEMENTATION
#include <helper_gl.h>
#include "particleSystem.h"
#include "particleSystem.cuh"
#include "particles_kernel.cuh"
#include <cuda_runtime.h>
#include <helper_functions.h>
#include <helper_cuda.h>
#include <assert.h>
#include <math.h>
#include <memory.h>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#ifndef CUDART_PI_F
#define CUDART_PI_F 3.141592654f
#endif
ParticleSystem::ParticleSystem(uint numParticles, uint3 gridSize, bool bUseOpenGL) :
m_bInitialized(false),
m_bUseOpenGL(bUseOpenGL),
m_numParticles(numParticles),
m_hPos(0),
m_hVel(0),
m_dPos(0),
m_dVel(0),
m_gridSize(gridSize),
m_timer(NULL),
m_solverIterations(1)
{
m_numGridCells = m_gridSize.x*m_gridSize.y*m_gridSize.z;
// float3 worldSize = make_float3(2.0f, 2.0f, 2.0f);
m_gridSortBits = 18; // increase this for larger grids
// set simulation parameters
m_params.gridSize = m_gridSize;
m_params.numCells = m_numGridCells;
m_params.numBodies = m_numParticles;
m_params.particleRadius = 1.0f / 64.0f;
m_params.colliderPos = make_float3(-1.2f, -0.8f, 0.8f);
m_params.colliderRadius = 0.2f;
m_params.worldOrigin = make_float3(-1.0f, -1.0f, -1.0f);
// m_params.cellSize = make_float3(worldSize.x / m_gridSize.x, worldSize.y / m_gridSize.y, worldSize.z / m_gridSize.z);
float cellSize = m_params.particleRadius * 2.0f; // cell size equal to particle diameter
m_params.cellSize = make_float3(cellSize, cellSize, cellSize);
m_params.spring = 0.5f;
m_params.damping = 0.02f;
m_params.shear = 0.1f;
m_params.attraction = 0.0f;
m_params.boundaryDamping = -0.5f;
m_params.gravity = make_float3(0.0f, -0.0003f, 0.0f);
m_params.globalDamping = 1.0f;
_initialize(numParticles);
}
ParticleSystem::~ParticleSystem()
{
_finalize();
m_numParticles = 0;
}
uint
ParticleSystem::createVBO(uint size)
{
GLuint vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
return vbo;
}
inline float lerp(float a, float b, float t)
{
return a + t*(b-a);
}
// create a color ramp
void colorRamp(float t, float *r)
{
const int ncolors = 7;
float c[ncolors][3] =
{
{ 1.0, 0.0, 0.0, },
{ 1.0, 0.5, 0.0, },
{ 1.0, 1.0, 0.0, },
{ 0.0, 1.0, 0.0, },
{ 0.0, 1.0, 1.0, },
{ 0.0, 0.0, 1.0, },
{ 1.0, 0.0, 1.0, },
};
t = t * (ncolors-1);
int i = (int) t;
float u = t - floorf(t);
r[0] = lerp(c[i][0], c[i+1][0], u);
r[1] = lerp(c[i][1], c[i+1][1], u);
r[2] = lerp(c[i][2], c[i+1][2], u);
}
void
ParticleSystem::_initialize(int numParticles)
{
assert(!m_bInitialized);
m_numParticles = numParticles;
// allocate host storage
m_hPos = new float[m_numParticles*4];
m_hVel = new float[m_numParticles*4];
memset(m_hPos, 0, m_numParticles*4*sizeof(float));
memset(m_hVel, 0, m_numParticles*4*sizeof(float));
m_hCellStart = new uint[m_numGridCells];
memset(m_hCellStart, 0, m_numGridCells*sizeof(uint));
m_hCellEnd = new uint[m_numGridCells];
memset(m_hCellEnd, 0, m_numGridCells*sizeof(uint));
// allocate GPU data
unsigned int memSize = sizeof(float) * 4 * m_numParticles;
if (m_bUseOpenGL)
{
m_posVbo = createVBO(memSize);
registerGLBufferObject(m_posVbo, &m_cuda_posvbo_resource);
}
else
{
checkCudaErrors(cudaMalloc((void **)&m_cudaPosVBO, memSize)) ;
}
allocateArray((void **)&m_dVel, memSize);
allocateArray((void **)&m_dSortedPos, memSize);
allocateArray((void **)&m_dSortedVel, memSize);
allocateArray((void **)&m_dGridParticleHash, m_numParticles*sizeof(uint));
allocateArray((void **)&m_dGridParticleIndex, m_numParticles*sizeof(uint));
allocateArray((void **)&m_dCellStart, m_numGridCells*sizeof(uint));
allocateArray((void **)&m_dCellEnd, m_numGridCells*sizeof(uint));
if (m_bUseOpenGL)
{
m_colorVBO = createVBO(m_numParticles*4*sizeof(float));
registerGLBufferObject(m_colorVBO, &m_cuda_colorvbo_resource);
// fill color buffer
glBindBuffer(GL_ARRAY_BUFFER, m_colorVBO);
float *data = (float *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
float *ptr = data;
for (uint i=0; i<m_numParticles; i++)
{
float t = i / (float) m_numParticles;
#if 0
*ptr++ = rand() / (float) RAND_MAX;
*ptr++ = rand() / (float) RAND_MAX;
*ptr++ = rand() / (float) RAND_MAX;
#else
colorRamp(t, ptr);
ptr+=3;
#endif
*ptr++ = 1.0f;
}
glUnmapBuffer(GL_ARRAY_BUFFER);
}
else
{
checkCudaErrors(cudaMalloc((void **)&m_cudaColorVBO, sizeof(float)*numParticles*4));
}
sdkCreateTimer(&m_timer);
setParameters(&m_params);
m_bInitialized = true;
}
void
ParticleSystem::_finalize()
{
assert(m_bInitialized);
delete [] m_hPos;
delete [] m_hVel;
delete [] m_hCellStart;
delete [] m_hCellEnd;
freeArray(m_dVel);
freeArray(m_dSortedPos);
freeArray(m_dSortedVel);
freeArray(m_dGridParticleHash);
freeArray(m_dGridParticleIndex);
freeArray(m_dCellStart);
freeArray(m_dCellEnd);
if (m_bUseOpenGL)
{
unregisterGLBufferObject(m_cuda_colorvbo_resource);
unregisterGLBufferObject(m_cuda_posvbo_resource);
glDeleteBuffers(1, (const GLuint *)&m_posVbo);
glDeleteBuffers(1, (const GLuint *)&m_colorVBO);
}
else
{
checkCudaErrors(cudaFree(m_cudaPosVBO));
checkCudaErrors(cudaFree(m_cudaColorVBO));
}
}
// step the simulation
void
ParticleSystem::update(float deltaTime)
{
assert(m_bInitialized);
float *dPos;
if (m_bUseOpenGL)
{
dPos = (float *) mapGLBufferObject(&m_cuda_posvbo_resource);
}
else
{
dPos = (float *) m_cudaPosVBO;
}
// update constants
setParameters(&m_params);
// integrate
integrateSystem(
dPos,
m_dVel,
deltaTime,
m_numParticles);
// calculate grid hash
calcHash(
m_dGridParticleHash,
m_dGridParticleIndex,
dPos,
m_numParticles);
// sort particles based on hash
sortParticles(m_dGridParticleHash, m_dGridParticleIndex, m_numParticles);
// reorder particle arrays into sorted order and
// find start and end of each cell
reorderDataAndFindCellStart(
m_dCellStart,
m_dCellEnd,
m_dSortedPos,
m_dSortedVel,
m_dGridParticleHash,
m_dGridParticleIndex,
dPos,
m_dVel,
m_numParticles,
m_numGridCells);
// process collisions
collide(
m_dVel,
m_dSortedPos,
m_dSortedVel,
m_dGridParticleIndex,
m_dCellStart,
m_dCellEnd,
m_numParticles,
m_numGridCells);
// note: do unmap at end here to avoid unnecessary graphics/CUDA context switch
if (m_bUseOpenGL)
{
unmapGLBufferObject(m_cuda_posvbo_resource);
}
}
void
ParticleSystem::dumpGrid()
{
// dump grid information
copyArrayFromDevice(m_hCellStart, m_dCellStart, 0, sizeof(uint)*m_numGridCells);
copyArrayFromDevice(m_hCellEnd, m_dCellEnd, 0, sizeof(uint)*m_numGridCells);
uint maxCellSize = 0;
for (uint i=0; i<m_numGridCells; i++)
{
if (m_hCellStart[i] != 0xffffffff)
{
uint cellSize = m_hCellEnd[i] - m_hCellStart[i];
// printf("cell: %d, %d particles\n", i, cellSize);
if (cellSize > maxCellSize)
{
maxCellSize = cellSize;
}
}
}
printf("maximum particles per cell = %d\n", maxCellSize);
}
void
ParticleSystem::dumpParticles(uint start, uint count)
{
// debug
copyArrayFromDevice(m_hPos, 0, &m_cuda_posvbo_resource, sizeof(float)*4*count);
copyArrayFromDevice(m_hVel, m_dVel, 0, sizeof(float)*4*count);
for (uint i=start; i<start+count; i++)
{
// printf("%d: ", i);
printf("pos: (%.4f, %.4f, %.4f, %.4f)\n", m_hPos[i*4+0], m_hPos[i*4+1], m_hPos[i*4+2], m_hPos[i*4+3]);
printf("vel: (%.4f, %.4f, %.4f, %.4f)\n", m_hVel[i*4+0], m_hVel[i*4+1], m_hVel[i*4+2], m_hVel[i*4+3]);
}
}
float *
ParticleSystem::getArray(ParticleArray array)
{
assert(m_bInitialized);
float *hdata = 0;
float *ddata = 0;
struct cudaGraphicsResource *cuda_vbo_resource = 0;
switch (array)
{
default:
case POSITION:
hdata = m_hPos;
ddata = m_dPos;
cuda_vbo_resource = m_cuda_posvbo_resource;
break;
case VELOCITY:
hdata = m_hVel;
ddata = m_dVel;
break;
}
copyArrayFromDevice(hdata, ddata, &cuda_vbo_resource, m_numParticles*4*sizeof(float));
return hdata;
}
void
ParticleSystem::setArray(ParticleArray array, const float *data, int start, int count)
{
assert(m_bInitialized);
switch (array)
{
default:
case POSITION:
{
if (m_bUseOpenGL)
{
unregisterGLBufferObject(m_cuda_posvbo_resource);
glBindBuffer(GL_ARRAY_BUFFER, m_posVbo);
glBufferSubData(GL_ARRAY_BUFFER, start*4*sizeof(float), count*4*sizeof(float), data);
glBindBuffer(GL_ARRAY_BUFFER, 0);
registerGLBufferObject(m_posVbo, &m_cuda_posvbo_resource);
}
else
{
copyArrayToDevice(m_cudaPosVBO, data, start*4*sizeof(float), count*4*sizeof(float));
}
}
break;
case VELOCITY:
copyArrayToDevice(m_dVel, data, start*4*sizeof(float), count*4*sizeof(float));
break;
}
}
inline float frand()
{
return rand() / (float) RAND_MAX;
}
void
ParticleSystem::initGrid(uint *size, float spacing, float jitter, uint numParticles)
{
srand(1973);
for (uint z=0; z<size[2]; z++)
{
for (uint y=0; y<size[1]; y++)
{
for (uint x=0; x<size[0]; x++)
{
uint i = (z*size[1]*size[0]) + (y*size[0]) + x;
if (i < numParticles)
{
m_hPos[i*4] = (spacing * x) + m_params.particleRadius - 1.0f + (frand()*2.0f-1.0f)*jitter;
m_hPos[i*4+1] = (spacing * y) + m_params.particleRadius - 1.0f + (frand()*2.0f-1.0f)*jitter;
m_hPos[i*4+2] = (spacing * z) + m_params.particleRadius - 1.0f + (frand()*2.0f-1.0f)*jitter;
m_hPos[i*4+3] = 1.0f;
m_hVel[i*4] = 0.0f;
m_hVel[i*4+1] = 0.0f;
m_hVel[i*4+2] = 0.0f;
m_hVel[i*4+3] = 0.0f;
}
}
}
}
}
void
ParticleSystem::reset(ParticleConfig config)
{
switch (config)
{
default:
case CONFIG_RANDOM:
{
int p = 0, v = 0;
for (uint i=0; i < m_numParticles; i++)
{
float point[3];
point[0] = frand();
point[1] = frand();
point[2] = frand();
m_hPos[p++] = 2 * (point[0] - 0.5f);
m_hPos[p++] = 2 * (point[1] - 0.5f);
m_hPos[p++] = 2 * (point[2] - 0.5f);
m_hPos[p++] = 1.0f; // radius
m_hVel[v++] = 0.0f;
m_hVel[v++] = 0.0f;
m_hVel[v++] = 0.0f;
m_hVel[v++] = 0.0f;
}
}
break;
case CONFIG_GRID:
{
float jitter = m_params.particleRadius*0.01f;
uint s = (int) ceilf(powf((float) m_numParticles, 1.0f / 3.0f));
uint gridSize[3];
gridSize[0] = gridSize[1] = gridSize[2] = s;
initGrid(gridSize, m_params.particleRadius*2.0f, jitter, m_numParticles);
}
break;
}
setArray(POSITION, m_hPos, 0, m_numParticles);
setArray(VELOCITY, m_hVel, 0, m_numParticles);
}
void
ParticleSystem::addSphere(int start, float *pos, float *vel, int r, float spacing)
{
uint index = start;
for (int z=-r; z<=r; z++)
{
for (int y=-r; y<=r; y++)
{
for (int x=-r; x<=r; x++)
{
float dx = x*spacing;
float dy = y*spacing;
float dz = z*spacing;
float l = sqrtf(dx*dx + dy*dy + dz*dz);
float jitter = m_params.particleRadius*0.01f;
if ((l <= m_params.particleRadius*2.0f*r) && (index < m_numParticles))
{
m_hPos[index*4] = pos[0] + dx + (frand()*2.0f-1.0f)*jitter;
m_hPos[index*4+1] = pos[1] + dy + (frand()*2.0f-1.0f)*jitter;
m_hPos[index*4+2] = pos[2] + dz + (frand()*2.0f-1.0f)*jitter;
m_hPos[index*4+3] = pos[3];
m_hVel[index*4] = vel[0];
m_hVel[index*4+1] = vel[1];
m_hVel[index*4+2] = vel[2];
m_hVel[index*4+3] = vel[3];
index++;
}
}
}
}
setArray(POSITION, m_hPos, start, index);
setArray(VELOCITY, m_hVel, start, index);
}