mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 10:39:16 +08:00
179 lines
6.9 KiB
Plaintext
179 lines
6.9 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef QUASIRANDOMGENERATOR_KERNEL_CUH
|
|
#define QUASIRANDOMGENERATOR_KERNEL_CUH
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <helper_cuda.h>
|
|
#include "quasirandomGenerator_common.h"
|
|
|
|
// Fast integer multiplication
|
|
#define MUL(a, b) __umul24(a, b)
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Niederreiter quasirandom number generation kernel
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static __constant__ unsigned int c_Table[QRNG_DIMENSIONS][QRNG_RESOLUTION];
|
|
|
|
static __global__ void quasirandomGeneratorKernel(float *d_Output,
|
|
unsigned int seed,
|
|
unsigned int N) {
|
|
unsigned int *dimBase = &c_Table[threadIdx.y][0];
|
|
unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
|
|
unsigned int threadN = MUL(blockDim.x, gridDim.x);
|
|
|
|
for (unsigned int pos = tid; pos < N; pos += threadN) {
|
|
unsigned int result = 0;
|
|
unsigned int data = seed + pos;
|
|
|
|
for (int bit = 0; bit < QRNG_RESOLUTION; bit++, data >>= 1)
|
|
if (data & 1) {
|
|
result ^= dimBase[bit];
|
|
}
|
|
|
|
d_Output[MUL(threadIdx.y, N) + pos] = (float)(result + 1) * INT_SCALE;
|
|
}
|
|
}
|
|
|
|
// Table initialization routine
|
|
extern "C" void initTableGPU(
|
|
unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]) {
|
|
checkCudaErrors(cudaMemcpyToSymbol(
|
|
c_Table, tableCPU,
|
|
QRNG_DIMENSIONS * QRNG_RESOLUTION * sizeof(unsigned int)));
|
|
}
|
|
|
|
// Host-side interface
|
|
extern "C" void quasirandomGeneratorGPU(float *d_Output, unsigned int seed,
|
|
unsigned int N) {
|
|
dim3 threads(128, QRNG_DIMENSIONS);
|
|
quasirandomGeneratorKernel<<<128, threads>>>(d_Output, seed, N);
|
|
getLastCudaError("quasirandomGeneratorKernel() execution failed.\n");
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Moro's Inverse Cumulative Normal Distribution function approximation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__device__ inline float MoroInvCNDgpu(unsigned int x) {
|
|
const float a1 = 2.50662823884f;
|
|
const float a2 = -18.61500062529f;
|
|
const float a3 = 41.39119773534f;
|
|
const float a4 = -25.44106049637f;
|
|
const float b1 = -8.4735109309f;
|
|
const float b2 = 23.08336743743f;
|
|
const float b3 = -21.06224101826f;
|
|
const float b4 = 3.13082909833f;
|
|
const float c1 = 0.337475482272615f;
|
|
const float c2 = 0.976169019091719f;
|
|
const float c3 = 0.160797971491821f;
|
|
const float c4 = 2.76438810333863E-02f;
|
|
const float c5 = 3.8405729373609E-03f;
|
|
const float c6 = 3.951896511919E-04f;
|
|
const float c7 = 3.21767881768E-05f;
|
|
const float c8 = 2.888167364E-07f;
|
|
const float c9 = 3.960315187E-07f;
|
|
|
|
float z;
|
|
|
|
bool negate = false;
|
|
|
|
// Ensure the conversion to floating point will give a value in the
|
|
// range (0,0.5] by restricting the input to the bottom half of the
|
|
// input domain. We will later reflect the result if the input was
|
|
// originally in the top half of the input domain
|
|
if (x >= 0x80000000UL) {
|
|
x = 0xffffffffUL - x;
|
|
negate = true;
|
|
}
|
|
|
|
// x is now in the range [0,0x80000000) (i.e. [0,0x7fffffff])
|
|
// Convert to floating point in (0,0.5]
|
|
const float x1 = 1.0f / static_cast<float>(0xffffffffUL);
|
|
const float x2 = x1 / 2.0f;
|
|
float p1 = x * x1 + x2;
|
|
// Convert to floating point in (-0.5,0]
|
|
float p2 = p1 - 0.5f;
|
|
|
|
// The input to the Moro inversion is p2 which is in the range
|
|
// (-0.5,0]. This means that our output will be the negative side
|
|
// of the bell curve (which we will reflect if "negate" is true).
|
|
|
|
// Main body of the bell curve for |p| < 0.42
|
|
if (p2 > -0.42f) {
|
|
z = p2 * p2;
|
|
z = p2 * (((a4 * z + a3) * z + a2) * z + a1) /
|
|
((((b4 * z + b3) * z + b2) * z + b1) * z + 1.0f);
|
|
}
|
|
// Special case (Chebychev) for tail
|
|
else {
|
|
z = __logf(-__logf(p1));
|
|
z = -(c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z * (c7 + z
|
|
* (c8 + z * c9))))))));
|
|
}
|
|
|
|
// If the original input (x) was in the top half of the range, reflect
|
|
// to get the positive side of the bell curve
|
|
return negate ? -z : z;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main kernel. Choose between transforming
|
|
// input sequence and uniform ascending (0, 1) sequence
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static __global__ void inverseCNDKernel(float *d_Output, unsigned int *d_Input,
|
|
unsigned int pathN) {
|
|
unsigned int distance = ((unsigned int)-1) / (pathN + 1);
|
|
unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
|
|
unsigned int threadN = MUL(blockDim.x, gridDim.x);
|
|
|
|
// Transform input number sequence if it's supplied
|
|
if (d_Input) {
|
|
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
|
|
unsigned int d = d_Input[pos];
|
|
d_Output[pos] = (float)MoroInvCNDgpu(d);
|
|
}
|
|
}
|
|
// Else generate input uniformly placed samples on the fly
|
|
// and write to destination
|
|
else {
|
|
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
|
|
unsigned int d = (pos + 1) * distance;
|
|
d_Output[pos] = (float)MoroInvCNDgpu(d);
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void inverseCNDgpu(float *d_Output, unsigned int *d_Input,
|
|
unsigned int N) {
|
|
inverseCNDKernel<<<128, 128>>>(d_Output, d_Input, N);
|
|
getLastCudaError("inverseCNDKernel() execution failed.\n");
|
|
}
|
|
|
|
#endif
|