mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 02:49:17 +08:00
265 lines
8.3 KiB
C++
265 lines
8.3 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample implements a conjugate gradient solver on GPU
|
|
* using CUBLAS and CUSPARSE
|
|
*
|
|
*/
|
|
|
|
// includes, system
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Using updated (v2) interfaces to cublas */
|
|
#include <cublas_v2.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cusparse.h>
|
|
|
|
// Utilities and system includes
|
|
#include <helper_cuda.h> // helper function CUDA error checking and initialization
|
|
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
|
|
|
|
const char *sSDKname = "conjugateGradient";
|
|
|
|
/* genTridiag: generate a random tridiagonal symmetric matrix */
|
|
void genTridiag(int *I, int *J, float *val, int N, int nz) {
|
|
I[0] = 0, J[0] = 0, J[1] = 1;
|
|
val[0] = (float)rand() / RAND_MAX + 10.0f;
|
|
val[1] = (float)rand() / RAND_MAX;
|
|
int start;
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
if (i > 1) {
|
|
I[i] = I[i - 1] + 3;
|
|
} else {
|
|
I[1] = 2;
|
|
}
|
|
|
|
start = (i - 1) * 3 + 2;
|
|
J[start] = i - 1;
|
|
J[start + 1] = i;
|
|
|
|
if (i < N - 1) {
|
|
J[start + 2] = i + 1;
|
|
}
|
|
|
|
val[start] = val[start - 1];
|
|
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
|
|
|
|
if (i < N - 1) {
|
|
val[start + 2] = (float)rand() / RAND_MAX;
|
|
}
|
|
}
|
|
|
|
I[N] = nz;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int M = 0, N = 0, nz = 0, *I = NULL, *J = NULL;
|
|
float *val = NULL;
|
|
const float tol = 1e-5f;
|
|
const int max_iter = 10000;
|
|
float *x;
|
|
float *rhs;
|
|
float a, b, na, r0, r1;
|
|
int *d_col, *d_row;
|
|
float *d_val, *d_x, dot;
|
|
float *d_r, *d_p, *d_Ax;
|
|
int k;
|
|
float alpha, beta, alpham1;
|
|
|
|
// This will pick the best possible CUDA capable device
|
|
cudaDeviceProp deviceProp;
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (devID < 0) {
|
|
printf("exiting...\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
|
|
|
|
// Statistics about the GPU device
|
|
printf(
|
|
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
|
|
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
|
|
|
|
/* Generate a random tridiagonal symmetric matrix in CSR format */
|
|
M = N = 1048576;
|
|
nz = (N - 2) * 3 + 4;
|
|
I = (int *)malloc(sizeof(int) * (N + 1));
|
|
J = (int *)malloc(sizeof(int) * nz);
|
|
val = (float *)malloc(sizeof(float) * nz);
|
|
genTridiag(I, J, val, N, nz);
|
|
|
|
x = (float *)malloc(sizeof(float) * N);
|
|
rhs = (float *)malloc(sizeof(float) * N);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rhs[i] = 1.0;
|
|
x[i] = 0.0;
|
|
}
|
|
|
|
/* Get handle to the CUBLAS context */
|
|
cublasHandle_t cublasHandle = 0;
|
|
cublasStatus_t cublasStatus;
|
|
cublasStatus = cublasCreate(&cublasHandle);
|
|
|
|
checkCudaErrors(cublasStatus);
|
|
|
|
/* Get handle to the CUSPARSE context */
|
|
cusparseHandle_t cusparseHandle = 0;
|
|
checkCudaErrors(cusparseCreate(&cusparseHandle));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float)));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
checkCudaErrors(cusparseCreateCsr(&matA, N, N, nz, d_row, d_col, d_val,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, N, d_x, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecp = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecp, N, d_p, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, N, d_Ax, CUDA_R_32F));
|
|
|
|
/* Initialize problem data */
|
|
cudaMemcpy(d_col, J, nz * sizeof(int), cudaMemcpyHostToDevice);
|
|
cudaMemcpy(d_row, I, (N + 1) * sizeof(int), cudaMemcpyHostToDevice);
|
|
cudaMemcpy(d_val, val, nz * sizeof(float), cudaMemcpyHostToDevice);
|
|
cudaMemcpy(d_x, x, N * sizeof(float), cudaMemcpyHostToDevice);
|
|
cudaMemcpy(d_r, rhs, N * sizeof(float), cudaMemcpyHostToDevice);
|
|
|
|
alpha = 1.0;
|
|
alpham1 = -1.0;
|
|
beta = 0.0;
|
|
r0 = 0.;
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
|
|
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
/* Begin CG */
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&alpha, matA, vecx, &beta, vecAx, CUDA_R_32F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1);
|
|
cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
|
|
|
|
k = 1;
|
|
|
|
while (r1 > tol * tol && k <= max_iter) {
|
|
if (k > 1) {
|
|
b = r1 / r0;
|
|
cublasStatus = cublasSscal(cublasHandle, N, &b, d_p, 1);
|
|
cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1);
|
|
} else {
|
|
cublasStatus = cublasScopy(cublasHandle, N, d_r, 1, d_p, 1);
|
|
}
|
|
|
|
checkCudaErrors(cusparseSpMV(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
|
|
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
cublasStatus = cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, &dot);
|
|
a = r1 / dot;
|
|
|
|
cublasStatus = cublasSaxpy(cublasHandle, N, &a, d_p, 1, d_x, 1);
|
|
na = -a;
|
|
cublasStatus = cublasSaxpy(cublasHandle, N, &na, d_Ax, 1, d_r, 1);
|
|
|
|
r0 = r1;
|
|
cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
|
|
cudaDeviceSynchronize();
|
|
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
|
|
k++;
|
|
}
|
|
|
|
cudaMemcpy(x, d_x, N * sizeof(float), cudaMemcpyDeviceToHost);
|
|
|
|
float rsum, diff, err = 0.0;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rsum = 0.0;
|
|
|
|
for (int j = I[i]; j < I[i + 1]; j++) {
|
|
rsum += val[j] * x[J[j]];
|
|
}
|
|
|
|
diff = fabs(rsum - rhs[i]);
|
|
|
|
if (diff > err) {
|
|
err = diff;
|
|
}
|
|
}
|
|
|
|
cusparseDestroy(cusparseHandle);
|
|
cublasDestroy(cublasHandle);
|
|
if (matA) {
|
|
checkCudaErrors(cusparseDestroySpMat(matA));
|
|
}
|
|
if (vecx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecx));
|
|
}
|
|
if (vecAx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecAx));
|
|
}
|
|
if (vecp) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecp));
|
|
}
|
|
|
|
free(I);
|
|
free(J);
|
|
free(val);
|
|
free(x);
|
|
free(rhs);
|
|
cudaFree(d_col);
|
|
cudaFree(d_row);
|
|
cudaFree(d_val);
|
|
cudaFree(d_x);
|
|
cudaFree(d_r);
|
|
cudaFree(d_p);
|
|
cudaFree(d_Ax);
|
|
|
|
printf("Test Summary: Error amount = %f\n", err);
|
|
exit((k <= max_iter) ? 0 : 1);
|
|
}
|