mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 12:59:17 +08:00
249 lines
7.8 KiB
C++
249 lines
7.8 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* Matrix multiplication: C = A * B.
|
|
* Host code.
|
|
*
|
|
* This sample implements matrix multiplication as described in Chapter 3
|
|
* of the programming guide.
|
|
* It has been written for clarity of exposition to illustrate various CUDA
|
|
* programming principles, not with the goal of providing the most
|
|
* performant generic kernel for matrix multiplication.
|
|
*
|
|
* See also:
|
|
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
|
|
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08),
|
|
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
|
|
*/
|
|
|
|
// System includes
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
#include "nvrtc_helper.h"
|
|
|
|
// Helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
|
|
void constantInit(float *data, int size, float val) {
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Run a simple test of matrix multiplication using CUDA
|
|
*/
|
|
int matrixMultiply(int argc, char **argv, int block_size, dim3 &dimsA,
|
|
dim3 &dimsB) {
|
|
// Allocate host memory for matrices A and B
|
|
unsigned int size_A = dimsA.x * dimsA.y;
|
|
unsigned int mem_size_A = sizeof(float) * size_A;
|
|
float *h_A = (float *)malloc(mem_size_A);
|
|
unsigned int size_B = dimsB.x * dimsB.y;
|
|
unsigned int mem_size_B = sizeof(float) * size_B;
|
|
float *h_B = (float *)malloc(mem_size_B);
|
|
|
|
// Initialize host memory
|
|
const float valB = 0.01f;
|
|
constantInit(h_A, size_A, 1.0f);
|
|
constantInit(h_B, size_B, valB);
|
|
|
|
// Allocate device memory
|
|
CUdeviceptr d_A, d_B, d_C;
|
|
|
|
char *cubin, *kernel_file;
|
|
size_t cubinSize;
|
|
|
|
kernel_file = sdkFindFilePath("matrixMul_kernel.cu", argv[0]);
|
|
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 1);
|
|
|
|
CUmodule module = loadCUBIN(cubin, argc, argv);
|
|
|
|
// Allocate host matrix C
|
|
dim3 dimsC(dimsB.x, dimsA.y, 1);
|
|
unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float);
|
|
float *h_C = (float *)malloc(mem_size_C);
|
|
|
|
if (h_C == NULL) {
|
|
fprintf(stderr, "Failed to allocate host matrix C!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
checkCudaErrors(cuMemAlloc(&d_A, mem_size_A));
|
|
checkCudaErrors(cuMemAlloc(&d_B, mem_size_B));
|
|
checkCudaErrors(cuMemAlloc(&d_C, mem_size_C));
|
|
|
|
// copy host memory to device
|
|
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, mem_size_A));
|
|
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, mem_size_B));
|
|
|
|
// Setup execution parameters
|
|
dim3 threads(block_size, block_size);
|
|
dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y);
|
|
|
|
// Create and start timer
|
|
printf("Computing result using CUDA Kernel...\n");
|
|
|
|
CUfunction kernel_addr;
|
|
if (block_size == 16) {
|
|
checkCudaErrors(
|
|
cuModuleGetFunction(&kernel_addr, module, "matrixMulCUDA_block16"));
|
|
} else {
|
|
checkCudaErrors(
|
|
cuModuleGetFunction(&kernel_addr, module, "matrixMulCUDA_block32"));
|
|
}
|
|
|
|
void *arr[] = {(void *)&d_C, (void *)&d_A, (void *)&d_B, (void *)&dimsA.x,
|
|
(void *)&dimsB.x};
|
|
|
|
// Execute the kernel
|
|
int nIter = 300;
|
|
|
|
for (int j = 0; j < nIter; j++) {
|
|
checkCudaErrors(
|
|
cuLaunchKernel(kernel_addr, grid.x, grid.y, grid.z, /* grid dim */
|
|
threads.x, threads.y, threads.z, /* block dim */
|
|
0, 0, /* shared mem, stream */
|
|
&arr[0], /* arguments */
|
|
0));
|
|
|
|
checkCudaErrors(cuCtxSynchronize());
|
|
}
|
|
|
|
// Copy result from device to host
|
|
checkCudaErrors(cuMemcpyDtoH(h_C, d_C, mem_size_C));
|
|
|
|
printf("Checking computed result for correctness: ");
|
|
|
|
bool correct = true;
|
|
|
|
// test relative error by the formula
|
|
// |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps
|
|
|
|
double eps = 1.e-6; // machine zero
|
|
|
|
for (int i = 0; i < (int)(dimsC.x * dimsC.y); i++) {
|
|
double abs_err = fabs(h_C[i] - (dimsA.x * valB));
|
|
double dot_length = dimsA.x;
|
|
double abs_val = fabs(h_C[i]);
|
|
double rel_err = abs_err / abs_val / dot_length;
|
|
|
|
if (rel_err > eps) {
|
|
printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i,
|
|
h_C[i], dimsA.x * valB, eps);
|
|
correct = false;
|
|
}
|
|
}
|
|
|
|
printf("%s\n", correct ? "Result = PASS" : "Result = FAIL");
|
|
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n");
|
|
|
|
// Clean up memory
|
|
free(h_A);
|
|
free(h_B);
|
|
free(h_C);
|
|
|
|
checkCudaErrors(cuMemFree(d_A));
|
|
checkCudaErrors(cuMemFree(d_B));
|
|
checkCudaErrors(cuMemFree(d_C));
|
|
|
|
if (correct) {
|
|
return EXIT_SUCCESS;
|
|
} else {
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Program main
|
|
*/
|
|
|
|
int main(int argc, char **argv) {
|
|
printf("[Matrix Multiply Using CUDA] - Starting...\n");
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
|
|
checkCmdLineFlag(argc, (const char **)argv, "?")) {
|
|
printf("Usage -device=n (n >= 0 for deviceID)\n");
|
|
printf(" -wA=WidthA -hA=HeightA (Width x Height of Matrix A)\n");
|
|
printf(" -wB=WidthB -hB=HeightB (Width x Height of Matrix B)\n");
|
|
printf(
|
|
" Note: Outer matrix dimensions of A & B matrices must be equal.\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
int block_size = 32;
|
|
|
|
// original:
|
|
dim3 dimsA(5 * 2 * block_size, 5 * 2 * block_size, 1);
|
|
dim3 dimsB(5 * 4 * block_size, 5 * 2 * block_size, 1);
|
|
|
|
// reduce sizes to avoid running out of memory
|
|
// dim3 dimsA(32,32, 1);
|
|
// dim3 dimsB(32,32,1);
|
|
|
|
// width of Matrix A
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "wA")) {
|
|
dimsA.x = getCmdLineArgumentInt(argc, (const char **)argv, "wA");
|
|
}
|
|
|
|
// height of Matrix A
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "hA")) {
|
|
dimsA.y = getCmdLineArgumentInt(argc, (const char **)argv, "hA");
|
|
}
|
|
|
|
// width of Matrix B
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "wB")) {
|
|
dimsB.x = getCmdLineArgumentInt(argc, (const char **)argv, "wB");
|
|
}
|
|
|
|
// height of Matrix B
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "hB")) {
|
|
dimsB.y = getCmdLineArgumentInt(argc, (const char **)argv, "hB");
|
|
}
|
|
|
|
if (dimsA.x != dimsB.y) {
|
|
printf("Error: outer matrix dimensions must be equal. (%d != %d)\n",
|
|
dimsA.x, dimsB.y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y, dimsB.x,
|
|
dimsB.y);
|
|
|
|
int matrix_result = matrixMultiply(argc, argv, block_size, dimsA, dimsB);
|
|
|
|
exit(matrix_result);
|
|
}
|