cuda-samples/Samples/conjugateGradient/main.cpp
2021-10-21 16:34:49 +05:30

265 lines
8.3 KiB
C++

/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements a conjugate gradient solver on GPU
* using CUBLAS and CUSPARSE
*
*/
// includes, system
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Using updated (v2) interfaces to cublas */
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <cusparse.h>
// Utilities and system includes
#include <helper_cuda.h> // helper function CUDA error checking and initialization
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
const char *sSDKname = "conjugateGradient";
/* genTridiag: generate a random tridiagonal symmetric matrix */
void genTridiag(int *I, int *J, float *val, int N, int nz) {
I[0] = 0, J[0] = 0, J[1] = 1;
val[0] = (float)rand() / RAND_MAX + 10.0f;
val[1] = (float)rand() / RAND_MAX;
int start;
for (int i = 1; i < N; i++) {
if (i > 1) {
I[i] = I[i - 1] + 3;
} else {
I[1] = 2;
}
start = (i - 1) * 3 + 2;
J[start] = i - 1;
J[start + 1] = i;
if (i < N - 1) {
J[start + 2] = i + 1;
}
val[start] = val[start - 1];
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
if (i < N - 1) {
val[start + 2] = (float)rand() / RAND_MAX;
}
}
I[N] = nz;
}
int main(int argc, char **argv) {
int M = 0, N = 0, nz = 0, *I = NULL, *J = NULL;
float *val = NULL;
const float tol = 1e-5f;
const int max_iter = 10000;
float *x;
float *rhs;
float a, b, na, r0, r1;
int *d_col, *d_row;
float *d_val, *d_x, dot;
float *d_r, *d_p, *d_Ax;
int k;
float alpha, beta, alpham1;
// This will pick the best possible CUDA capable device
cudaDeviceProp deviceProp;
int devID = findCudaDevice(argc, (const char **)argv);
if (devID < 0) {
printf("exiting...\n");
exit(EXIT_SUCCESS);
}
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// Statistics about the GPU device
printf(
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
/* Generate a random tridiagonal symmetric matrix in CSR format */
M = N = 1048576;
nz = (N - 2) * 3 + 4;
I = (int *)malloc(sizeof(int) * (N + 1));
J = (int *)malloc(sizeof(int) * nz);
val = (float *)malloc(sizeof(float) * nz);
genTridiag(I, J, val, N, nz);
x = (float *)malloc(sizeof(float) * N);
rhs = (float *)malloc(sizeof(float) * N);
for (int i = 0; i < N; i++) {
rhs[i] = 1.0;
x[i] = 0.0;
}
/* Get handle to the CUBLAS context */
cublasHandle_t cublasHandle = 0;
cublasStatus_t cublasStatus;
cublasStatus = cublasCreate(&cublasHandle);
checkCudaErrors(cublasStatus);
/* Get handle to the CUSPARSE context */
cusparseHandle_t cusparseHandle = 0;
checkCudaErrors(cusparseCreate(&cusparseHandle));
checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int)));
checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int)));
checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float)));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
checkCudaErrors(cusparseCreateCsr(&matA, N, N, nz, d_row, d_col, d_val,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F));
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, N, d_x, CUDA_R_32F));
cusparseDnVecDescr_t vecp = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecp, N, d_p, CUDA_R_32F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, N, d_Ax, CUDA_R_32F));
/* Initialize problem data */
cudaMemcpy(d_col, J, nz * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_row, I, (N + 1) * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_val, val, nz * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_x, x, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_r, rhs, N * sizeof(float), cudaMemcpyHostToDevice);
alpha = 1.0;
alpham1 = -1.0;
beta = 0.0;
r0 = 0.;
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
/* Begin CG */
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha, matA, vecx, &beta, vecAx, CUDA_R_32F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1);
cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
k = 1;
while (r1 > tol * tol && k <= max_iter) {
if (k > 1) {
b = r1 / r0;
cublasStatus = cublasSscal(cublasHandle, N, &b, d_p, 1);
cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1);
} else {
cublasStatus = cublasScopy(cublasHandle, N, d_r, 1, d_p, 1);
}
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
cublasStatus = cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, &dot);
a = r1 / dot;
cublasStatus = cublasSaxpy(cublasHandle, N, &a, d_p, 1, d_x, 1);
na = -a;
cublasStatus = cublasSaxpy(cublasHandle, N, &na, d_Ax, 1, d_r, 1);
r0 = r1;
cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
cudaDeviceSynchronize();
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
k++;
}
cudaMemcpy(x, d_x, N * sizeof(float), cudaMemcpyDeviceToHost);
float rsum, diff, err = 0.0;
for (int i = 0; i < N; i++) {
rsum = 0.0;
for (int j = I[i]; j < I[i + 1]; j++) {
rsum += val[j] * x[J[j]];
}
diff = fabs(rsum - rhs[i]);
if (diff > err) {
err = diff;
}
}
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
if (matA) {
checkCudaErrors(cusparseDestroySpMat(matA));
}
if (vecx) {
checkCudaErrors(cusparseDestroyDnVec(vecx));
}
if (vecAx) {
checkCudaErrors(cusparseDestroyDnVec(vecAx));
}
if (vecp) {
checkCudaErrors(cusparseDestroyDnVec(vecp));
}
free(I);
free(J);
free(val);
free(x);
free(rhs);
cudaFree(d_col);
cudaFree(d_row);
cudaFree(d_val);
cudaFree(d_x);
cudaFree(d_r);
cudaFree(d_p);
cudaFree(d_Ax);
printf("Test Summary: Error amount = %f\n", err);
exit((k <= max_iter) ? 0 : 1);
}