mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 18:29:18 +08:00
544 lines
21 KiB
C++
544 lines
21 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "VulkanBaseApp.h"
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <chrono>
|
|
#include <algorithm>
|
|
#include "linmath.h"
|
|
|
|
#include "SineWaveSimulation.h"
|
|
|
|
#include <helper_cuda.h>
|
|
|
|
typedef float vec2[2];
|
|
std::string execution_path;
|
|
|
|
#ifndef NDEBUG
|
|
#define ENABLE_VALIDATION (false)
|
|
#else
|
|
#define ENABLE_VALIDATION (true)
|
|
#endif
|
|
|
|
class VulkanCudaSineWave : public VulkanBaseApp {
|
|
typedef struct UniformBufferObject_st {
|
|
mat4x4 modelViewProj;
|
|
} UniformBufferObject;
|
|
|
|
VkBuffer m_heightBuffer, m_xyBuffer, m_indexBuffer;
|
|
VkDeviceMemory m_heightMemory, m_xyMemory, m_indexMemory;
|
|
UniformBufferObject m_ubo;
|
|
VkSemaphore m_vkWaitSemaphore, m_vkSignalSemaphore;
|
|
SineWaveSimulation m_sim;
|
|
cudaStream_t m_stream;
|
|
cudaExternalSemaphore_t m_cudaWaitSemaphore, m_cudaSignalSemaphore,
|
|
m_cudaTimelineSemaphore;
|
|
cudaExternalMemory_t m_cudaVertMem;
|
|
float *m_cudaHeightMap;
|
|
using chrono_tp = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
|
chrono_tp m_lastTime;
|
|
size_t m_lastFrame;
|
|
|
|
public:
|
|
VulkanCudaSineWave(size_t width, size_t height)
|
|
: VulkanBaseApp("vulkanCudaSineWave", ENABLE_VALIDATION),
|
|
m_heightBuffer(VK_NULL_HANDLE),
|
|
m_xyBuffer(VK_NULL_HANDLE),
|
|
m_indexBuffer(VK_NULL_HANDLE),
|
|
m_heightMemory(VK_NULL_HANDLE),
|
|
m_xyMemory(VK_NULL_HANDLE),
|
|
m_indexMemory(VK_NULL_HANDLE),
|
|
m_ubo(),
|
|
m_sim(width, height),
|
|
m_stream(0),
|
|
m_vkWaitSemaphore(VK_NULL_HANDLE),
|
|
m_vkSignalSemaphore(VK_NULL_HANDLE),
|
|
m_cudaWaitSemaphore(),
|
|
m_cudaSignalSemaphore(),
|
|
m_cudaTimelineSemaphore(),
|
|
m_cudaVertMem(),
|
|
m_cudaHeightMap(nullptr),
|
|
m_lastFrame(0) {
|
|
// Our index buffer can only index 32-bits of the vertex buffer
|
|
if ((width * height) > (1ULL << 32ULL)) {
|
|
throw std::runtime_error(
|
|
"Requested height and width is too large for this sample!");
|
|
}
|
|
// Add our compiled vulkan shader files
|
|
char *vertex_shader_path =
|
|
sdkFindFilePath("vert.spv", execution_path.c_str());
|
|
char *fragment_shader_path =
|
|
sdkFindFilePath("frag.spv", execution_path.c_str());
|
|
m_shaderFiles.push_back(
|
|
std::make_pair(VK_SHADER_STAGE_VERTEX_BIT, vertex_shader_path));
|
|
m_shaderFiles.push_back(
|
|
std::make_pair(VK_SHADER_STAGE_FRAGMENT_BIT, fragment_shader_path));
|
|
}
|
|
~VulkanCudaSineWave() {
|
|
// Make sure there's no pending work before we start tearing down
|
|
checkCudaErrors(cudaStreamSynchronize(m_stream));
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
if (m_vkTimelineSemaphore != VK_NULL_HANDLE) {
|
|
checkCudaErrors(cudaDestroyExternalSemaphore(m_cudaTimelineSemaphore));
|
|
vkDestroySemaphore(m_device, m_vkTimelineSemaphore, nullptr);
|
|
}
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
|
|
if (m_vkSignalSemaphore != VK_NULL_HANDLE) {
|
|
checkCudaErrors(cudaDestroyExternalSemaphore(m_cudaSignalSemaphore));
|
|
vkDestroySemaphore(m_device, m_vkSignalSemaphore, nullptr);
|
|
}
|
|
if (m_vkWaitSemaphore != VK_NULL_HANDLE) {
|
|
checkCudaErrors(cudaDestroyExternalSemaphore(m_cudaWaitSemaphore));
|
|
vkDestroySemaphore(m_device, m_vkWaitSemaphore, nullptr);
|
|
}
|
|
|
|
if (m_xyBuffer != VK_NULL_HANDLE) {
|
|
vkDestroyBuffer(m_device, m_xyBuffer, nullptr);
|
|
}
|
|
if (m_xyMemory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(m_device, m_xyMemory, nullptr);
|
|
}
|
|
|
|
if (m_heightBuffer != VK_NULL_HANDLE) {
|
|
vkDestroyBuffer(m_device, m_heightBuffer, nullptr);
|
|
}
|
|
if (m_heightMemory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(m_device, m_heightMemory, nullptr);
|
|
}
|
|
if (m_cudaHeightMap) {
|
|
checkCudaErrors(cudaDestroyExternalMemory(m_cudaVertMem));
|
|
}
|
|
|
|
if (m_indexBuffer != VK_NULL_HANDLE) {
|
|
vkDestroyBuffer(m_device, m_indexBuffer, nullptr);
|
|
}
|
|
if (m_indexMemory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(m_device, m_indexMemory, nullptr);
|
|
}
|
|
}
|
|
|
|
void fillRenderingCommandBuffer(VkCommandBuffer &commandBuffer) {
|
|
VkBuffer vertexBuffers[] = {m_heightBuffer, m_xyBuffer};
|
|
VkDeviceSize offsets[] = {0, 0};
|
|
vkCmdBindVertexBuffers(commandBuffer, 0,
|
|
sizeof(vertexBuffers) / sizeof(vertexBuffers[0]),
|
|
vertexBuffers, offsets);
|
|
vkCmdBindIndexBuffer(commandBuffer, m_indexBuffer, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdDrawIndexed(commandBuffer, (uint32_t)((m_sim.getWidth() - 1) *
|
|
(m_sim.getHeight() - 1) * 6),
|
|
1, 0, 0, 0);
|
|
}
|
|
|
|
void getVertexDescriptions(
|
|
std::vector<VkVertexInputBindingDescription> &bindingDesc,
|
|
std::vector<VkVertexInputAttributeDescription> &attribDesc) {
|
|
bindingDesc.resize(2);
|
|
attribDesc.resize(2);
|
|
|
|
bindingDesc[0].binding = 0;
|
|
bindingDesc[0].stride = sizeof(float);
|
|
bindingDesc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
|
|
|
bindingDesc[1].binding = 1;
|
|
bindingDesc[1].stride = sizeof(vec2);
|
|
bindingDesc[1].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
|
|
|
attribDesc[0].binding = 0;
|
|
attribDesc[0].location = 0;
|
|
attribDesc[0].format = VK_FORMAT_R32_SFLOAT;
|
|
attribDesc[0].offset = 0;
|
|
|
|
attribDesc[1].binding = 1;
|
|
attribDesc[1].location = 1;
|
|
attribDesc[1].format = VK_FORMAT_R32G32_SFLOAT;
|
|
attribDesc[1].offset = 0;
|
|
}
|
|
|
|
void getAssemblyStateInfo(VkPipelineInputAssemblyStateCreateInfo &info) {
|
|
info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
info.primitiveRestartEnable = VK_FALSE;
|
|
}
|
|
|
|
void getWaitFrameSemaphores(
|
|
std::vector<VkSemaphore> &wait,
|
|
std::vector<VkPipelineStageFlags> &waitStages) const {
|
|
if (m_currentFrame != 0) {
|
|
// Have vulkan wait until cuda is done with the vertex buffer before
|
|
// rendering, We don't do this on the first frame, as the wait semaphore
|
|
// hasn't been initialized yet
|
|
wait.push_back(m_vkWaitSemaphore);
|
|
// We want to wait until all the pipeline commands are complete before
|
|
// letting cuda work
|
|
waitStages.push_back(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
|
|
}
|
|
}
|
|
|
|
void getSignalFrameSemaphores(std::vector<VkSemaphore> &signal) const {
|
|
// Add this semaphore for vulkan to signal once the vertex buffer is ready
|
|
// for cuda to modify
|
|
signal.push_back(m_vkSignalSemaphore);
|
|
}
|
|
|
|
void initVulkanApp() {
|
|
int cuda_device = -1;
|
|
|
|
// Select cuda device where vulkan is running.
|
|
cuda_device = m_sim.initCuda(m_vkDeviceUUID, VK_UUID_SIZE);
|
|
if (cuda_device == -1) {
|
|
printf("Error: No CUDA-Vulkan interop capable device found\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
m_sim.initCudaLaunchConfig(cuda_device);
|
|
|
|
// Create the cuda stream we'll be using
|
|
checkCudaErrors(
|
|
cudaStreamCreateWithFlags(&m_stream, cudaStreamNonBlocking));
|
|
|
|
const size_t nVerts = m_sim.getWidth() * m_sim.getHeight();
|
|
const size_t nInds = (m_sim.getWidth() - 1) * (m_sim.getHeight() - 1) * 6;
|
|
|
|
// Create the height map cuda will write to
|
|
createExternalBuffer(
|
|
nVerts * sizeof(float),
|
|
VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, getDefaultMemHandleType(),
|
|
m_heightBuffer, m_heightMemory);
|
|
|
|
// Create the vertex buffer that will hold the xy coordinates for the grid
|
|
createBuffer(nVerts * sizeof(vec2), VK_BUFFER_USAGE_TRANSFER_DST_BIT |
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, m_xyBuffer, m_xyMemory);
|
|
|
|
// Create the index buffer that references from both buffers above
|
|
createBuffer(
|
|
nInds * sizeof(uint32_t),
|
|
VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, m_indexBuffer, m_indexMemory);
|
|
|
|
// Import the height map into cuda and retrieve a device pointer to use
|
|
importCudaExternalMemory((void **)&m_cudaHeightMap, m_cudaVertMem,
|
|
m_heightMemory, nVerts * sizeof(*m_cudaHeightMap),
|
|
getDefaultMemHandleType());
|
|
// Set the height map to use in the simulation
|
|
m_sim.initSimulation(m_cudaHeightMap);
|
|
|
|
{
|
|
// Set up the initial values for the vertex buffers with Vulkan
|
|
void *stagingBase;
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingMemory;
|
|
VkDeviceSize stagingSz =
|
|
std::max(nVerts * sizeof(vec2), nInds * sizeof(uint32_t));
|
|
createBuffer(stagingSz, VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
stagingBuffer, stagingMemory);
|
|
|
|
vkMapMemory(m_device, stagingMemory, 0, stagingSz, 0, &stagingBase);
|
|
|
|
memset(stagingBase, 0, nVerts * sizeof(float));
|
|
copyBuffer(m_heightBuffer, stagingBuffer, nVerts * sizeof(float));
|
|
|
|
for (size_t y = 0; y < m_sim.getHeight(); y++) {
|
|
for (size_t x = 0; x < m_sim.getWidth(); x++) {
|
|
vec2 *stagedVert = (vec2 *)stagingBase;
|
|
stagedVert[y * m_sim.getWidth() + x][0] =
|
|
(2.0f * x) / (m_sim.getWidth() - 1) - 1;
|
|
stagedVert[y * m_sim.getWidth() + x][1] =
|
|
(2.0f * y) / (m_sim.getHeight() - 1) - 1;
|
|
}
|
|
}
|
|
copyBuffer(m_xyBuffer, stagingBuffer, nVerts * sizeof(vec2));
|
|
|
|
{
|
|
uint32_t *indices = (uint32_t *)stagingBase;
|
|
for (size_t y = 0; y < m_sim.getHeight() - 1; y++) {
|
|
for (size_t x = 0; x < m_sim.getWidth() - 1; x++) {
|
|
indices[0] = (uint32_t)((y + 0) * m_sim.getWidth() + (x + 0));
|
|
indices[1] = (uint32_t)((y + 1) * m_sim.getWidth() + (x + 0));
|
|
indices[2] = (uint32_t)((y + 0) * m_sim.getWidth() + (x + 1));
|
|
indices[3] = (uint32_t)((y + 1) * m_sim.getWidth() + (x + 0));
|
|
indices[4] = (uint32_t)((y + 1) * m_sim.getWidth() + (x + 1));
|
|
indices[5] = (uint32_t)((y + 0) * m_sim.getWidth() + (x + 1));
|
|
indices += 6;
|
|
}
|
|
}
|
|
}
|
|
copyBuffer(m_indexBuffer, stagingBuffer, nInds * sizeof(uint32_t));
|
|
|
|
vkUnmapMemory(m_device, stagingMemory);
|
|
vkDestroyBuffer(m_device, stagingBuffer, nullptr);
|
|
vkFreeMemory(m_device, stagingMemory, nullptr);
|
|
}
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
// Create the timeline semaphore to sync cuda and vulkan access to vertex
|
|
// buffer
|
|
createExternalSemaphore(m_vkTimelineSemaphore,
|
|
getDefaultSemaphoreHandleType());
|
|
// Import the timeline semaphore cuda will use to sync cuda and vulkan
|
|
// access to vertex buffer
|
|
importCudaExternalSemaphore(m_cudaTimelineSemaphore, m_vkTimelineSemaphore,
|
|
getDefaultSemaphoreHandleType());
|
|
#else
|
|
// Create the semaphore vulkan will signal when it's done with the vertex
|
|
// buffer
|
|
createExternalSemaphore(m_vkSignalSemaphore,
|
|
getDefaultSemaphoreHandleType());
|
|
// Create the semaphore vulkan will wait for before using the vertex buffer
|
|
createExternalSemaphore(m_vkWaitSemaphore, getDefaultSemaphoreHandleType());
|
|
// Import the semaphore cuda will use -- vulkan's signal will be cuda's wait
|
|
importCudaExternalSemaphore(m_cudaWaitSemaphore, m_vkSignalSemaphore,
|
|
getDefaultSemaphoreHandleType());
|
|
// Import the semaphore cuda will use -- cuda's signal will be vulkan's wait
|
|
importCudaExternalSemaphore(m_cudaSignalSemaphore, m_vkWaitSemaphore,
|
|
getDefaultSemaphoreHandleType());
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
}
|
|
|
|
void importCudaExternalMemory(void **cudaPtr, cudaExternalMemory_t &cudaMem,
|
|
VkDeviceMemory &vkMem, VkDeviceSize size,
|
|
VkExternalMemoryHandleTypeFlagBits handleType) {
|
|
cudaExternalMemoryHandleDesc externalMemoryHandleDesc = {};
|
|
|
|
if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT) {
|
|
externalMemoryHandleDesc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
|
|
} else if (handleType &
|
|
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT) {
|
|
externalMemoryHandleDesc.type =
|
|
cudaExternalMemoryHandleTypeOpaqueWin32Kmt;
|
|
} else if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
|
|
externalMemoryHandleDesc.type = cudaExternalMemoryHandleTypeOpaqueFd;
|
|
} else {
|
|
throw std::runtime_error("Unknown handle type requested!");
|
|
}
|
|
|
|
externalMemoryHandleDesc.size = size;
|
|
|
|
#ifdef _WIN64
|
|
externalMemoryHandleDesc.handle.win32.handle =
|
|
(HANDLE)getMemHandle(vkMem, handleType);
|
|
#else
|
|
externalMemoryHandleDesc.handle.fd =
|
|
(int)(uintptr_t)getMemHandle(vkMem, handleType);
|
|
#endif
|
|
|
|
checkCudaErrors(
|
|
cudaImportExternalMemory(&cudaMem, &externalMemoryHandleDesc));
|
|
|
|
cudaExternalMemoryBufferDesc externalMemBufferDesc = {};
|
|
externalMemBufferDesc.offset = 0;
|
|
externalMemBufferDesc.size = size;
|
|
externalMemBufferDesc.flags = 0;
|
|
|
|
checkCudaErrors(cudaExternalMemoryGetMappedBuffer(cudaPtr, cudaMem,
|
|
&externalMemBufferDesc));
|
|
}
|
|
|
|
void importCudaExternalSemaphore(
|
|
cudaExternalSemaphore_t &cudaSem, VkSemaphore &vkSem,
|
|
VkExternalSemaphoreHandleTypeFlagBits handleType) {
|
|
cudaExternalSemaphoreHandleDesc externalSemaphoreHandleDesc = {};
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32;
|
|
} else if (handleType &
|
|
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32;
|
|
} else if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd;
|
|
}
|
|
#else
|
|
if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeOpaqueWin32;
|
|
} else if (handleType &
|
|
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt;
|
|
} else if (handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
|
|
externalSemaphoreHandleDesc.type =
|
|
cudaExternalSemaphoreHandleTypeOpaqueFd;
|
|
}
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
else {
|
|
throw std::runtime_error("Unknown handle type requested!");
|
|
}
|
|
|
|
#ifdef _WIN64
|
|
externalSemaphoreHandleDesc.handle.win32.handle =
|
|
(HANDLE)getSemaphoreHandle(vkSem, handleType);
|
|
#else
|
|
externalSemaphoreHandleDesc.handle.fd =
|
|
(int)(uintptr_t)getSemaphoreHandle(vkSem, handleType);
|
|
#endif
|
|
|
|
externalSemaphoreHandleDesc.flags = 0;
|
|
|
|
checkCudaErrors(
|
|
cudaImportExternalSemaphore(&cudaSem, &externalSemaphoreHandleDesc));
|
|
}
|
|
|
|
VkDeviceSize getUniformSize() const { return sizeof(UniformBufferObject); }
|
|
|
|
void updateUniformBuffer(uint32_t imageIndex) {
|
|
{
|
|
mat4x4 view, proj;
|
|
vec3 eye = {1.75f, 1.75f, 1.25f};
|
|
vec3 center = {0.0f, 0.0f, -0.25f};
|
|
vec3 up = {0.0f, 0.0f, 1.0f};
|
|
|
|
mat4x4_perspective(
|
|
proj, (float)degreesToRadians(45.0f),
|
|
m_swapChainExtent.width / (float)m_swapChainExtent.height, 0.1f,
|
|
10.0f);
|
|
proj[1][1] *= -1.0f; // Flip y axis
|
|
|
|
mat4x4_look_at(view, eye, center, up);
|
|
mat4x4_mul(m_ubo.modelViewProj, proj, view);
|
|
}
|
|
|
|
void *data;
|
|
vkMapMemory(m_device, m_uniformMemory[imageIndex], 0, getUniformSize(), 0,
|
|
&data);
|
|
memcpy(data, &m_ubo, sizeof(m_ubo));
|
|
vkUnmapMemory(m_device, m_uniformMemory[imageIndex]);
|
|
}
|
|
|
|
std::vector<const char *> getRequiredExtensions() const {
|
|
std::vector<const char *> extensions;
|
|
extensions.push_back(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME);
|
|
extensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
|
|
return extensions;
|
|
}
|
|
|
|
std::vector<const char *> getRequiredDeviceExtensions() const {
|
|
std::vector<const char *> extensions;
|
|
extensions.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
|
|
extensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
|
|
extensions.push_back(VK_KHR_TIMELINE_SEMAPHORE_EXTENSION_NAME);
|
|
#ifdef _WIN64
|
|
extensions.push_back(VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME);
|
|
extensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME);
|
|
#else
|
|
extensions.push_back(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME);
|
|
extensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME);
|
|
#endif /* _WIN64 */
|
|
return extensions;
|
|
}
|
|
|
|
void drawFrame() {
|
|
static chrono_tp startTime = std::chrono::high_resolution_clock::now();
|
|
|
|
chrono_tp currentTime = std::chrono::high_resolution_clock::now();
|
|
float time = std::chrono::duration<float, std::chrono::seconds::period>(
|
|
currentTime - startTime)
|
|
.count();
|
|
|
|
if (m_currentFrame == 0) {
|
|
m_lastTime = startTime;
|
|
}
|
|
|
|
float frame_time =
|
|
std::chrono::duration<float, std::chrono::seconds::period>(currentTime -
|
|
m_lastTime)
|
|
.count();
|
|
|
|
// Have vulkan draw the current frame...
|
|
VulkanBaseApp::drawFrame();
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
static uint64_t waitValue = 1;
|
|
static uint64_t signalValue = 2;
|
|
|
|
cudaExternalSemaphoreWaitParams waitParams = {};
|
|
waitParams.flags = 0;
|
|
waitParams.params.fence.value = waitValue;
|
|
|
|
cudaExternalSemaphoreSignalParams signalParams = {};
|
|
signalParams.flags = 0;
|
|
signalParams.params.fence.value = signalValue;
|
|
// Wait for vulkan to complete it's work
|
|
checkCudaErrors(cudaWaitExternalSemaphoresAsync(&m_cudaTimelineSemaphore,
|
|
&waitParams, 1, m_stream));
|
|
// Now step the simulation
|
|
m_sim.stepSimulation(time, m_stream);
|
|
// Signal vulkan to continue with the updated buffers
|
|
checkCudaErrors(cudaSignalExternalSemaphoresAsync(
|
|
&m_cudaTimelineSemaphore, &signalParams, 1, m_stream));
|
|
|
|
waitValue += 2;
|
|
signalValue += 2;
|
|
#else
|
|
cudaExternalSemaphoreWaitParams waitParams = {};
|
|
waitParams.flags = 0;
|
|
waitParams.params.fence.value = 0;
|
|
|
|
cudaExternalSemaphoreSignalParams signalParams = {};
|
|
signalParams.flags = 0;
|
|
signalParams.params.fence.value = 0;
|
|
|
|
// Wait for vulkan to complete it's work
|
|
checkCudaErrors(cudaWaitExternalSemaphoresAsync(&m_cudaWaitSemaphore,
|
|
&waitParams, 1, m_stream));
|
|
// Now step the simulation
|
|
m_sim.stepSimulation(time, m_stream);
|
|
// Signal vulkan to continue with the updated buffers
|
|
checkCudaErrors(cudaSignalExternalSemaphoresAsync(
|
|
&m_cudaSignalSemaphore, &signalParams, 1, m_stream));
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
|
|
// Output a naive measurement of the frames per second every five seconds
|
|
if (frame_time > 5) {
|
|
std::cout << "Average FPS (over " << std::fixed << std::setprecision(2)
|
|
<< frame_time << " seconds): " << std::fixed
|
|
<< std::setprecision(2)
|
|
<< ((m_currentFrame - m_lastFrame) / frame_time) << std::endl;
|
|
m_lastFrame = m_currentFrame;
|
|
m_lastTime = currentTime;
|
|
}
|
|
}
|
|
};
|
|
|
|
int main(int argc, char **argv) {
|
|
execution_path = argv[0];
|
|
VulkanCudaSineWave app((1ULL << 8ULL), (1ULL << 8ULL));
|
|
app.init();
|
|
app.mainLoop();
|
|
return 0;
|
|
}
|