mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 17:39:16 +08:00
334 lines
12 KiB
Plaintext
334 lines
12 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <cuda.h>
|
|
#include <builtin_types.h>
|
|
#include <cufft.h>
|
|
#include <cuda_runtime.h>
|
|
#include <helper_cuda.h>
|
|
#include "fluidsD3D9_kernels.h"
|
|
|
|
// Texture object for reading velocity field
|
|
cudaTextureObject_t texObj;
|
|
static cudaArray *array = NULL;
|
|
|
|
void setupTexture(int x, int y) {
|
|
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
|
|
|
|
cudaMallocArray(&array, &desc, y, x);
|
|
getLastCudaError("cudaMalloc failed");
|
|
|
|
cudaResourceDesc texRes;
|
|
memset(&texRes, 0, sizeof(cudaResourceDesc));
|
|
|
|
texRes.resType = cudaResourceTypeArray;
|
|
texRes.res.array.array = array;
|
|
|
|
cudaTextureDesc texDescr;
|
|
memset(&texDescr, 0, sizeof(cudaTextureDesc));
|
|
|
|
texDescr.normalizedCoords = false;
|
|
texDescr.filterMode = cudaFilterModeLinear;
|
|
texDescr.addressMode[0] = cudaAddressModeWrap;
|
|
texDescr.readMode = cudaReadModeElementType;
|
|
|
|
checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL));
|
|
}
|
|
|
|
void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) {
|
|
checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h,
|
|
cudaMemcpyDeviceToDevice));
|
|
}
|
|
|
|
void deleteTexture(void) {
|
|
checkCudaErrors(cudaDestroyTextureObject(texObj));
|
|
checkCudaErrors(cudaFreeArray(array));
|
|
}
|
|
|
|
// Note that these kernels are designed to work with arbitrary
|
|
// domain sizes, not just domains that are multiples of the tile
|
|
// size. Therefore, we have extra code that checks to make sure
|
|
// a given thread location falls within the domain boundaries in
|
|
// both X and Y. Also, the domain is covered by looping over
|
|
// multiple elements in the Y direction, while there is a one-to-one
|
|
// mapping between threads in X and the tile size in X.
|
|
// Nolan Goodnight 9/22/06
|
|
|
|
// This method adds constant force vectors to the velocity field
|
|
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
|
|
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
|
|
float fx, float fy, int r, size_t pitch) {
|
|
int tx = threadIdx.x;
|
|
int ty = threadIdx.y;
|
|
cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx;
|
|
|
|
cData vterm = *fj;
|
|
tx -= r;
|
|
ty -= r;
|
|
float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty);
|
|
vterm.x += s * fx;
|
|
vterm.y += s * fy;
|
|
*fj = vterm;
|
|
}
|
|
|
|
// This method performs the velocity advection step, where we
|
|
// trace velocity vectors back in time to update each grid cell.
|
|
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
|
|
// interpolation in the velocity space.
|
|
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
|
|
int pdx, int dy, float dt, int lb,
|
|
cudaTextureObject_t texObject) {
|
|
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
|
|
int p;
|
|
|
|
cData vterm, ploc;
|
|
float vxterm, vyterm;
|
|
|
|
// gtidx is the domain location in x for this thread
|
|
if (gtidx < dx) {
|
|
for (p = 0; p < lb; p++) {
|
|
// fi is the domain location in y for this thread
|
|
int fi = gtidy + p;
|
|
|
|
if (fi < dy) {
|
|
int fj = fi * pdx + gtidx;
|
|
vterm = tex2D<cData>(texObject, (float)gtidx, (float)fi);
|
|
ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);
|
|
ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);
|
|
vterm = tex2D<cData>(texObject, ploc.x, ploc.y);
|
|
vxterm = vterm.x;
|
|
vyterm = vterm.y;
|
|
vx[fj] = vxterm;
|
|
vy[fj] = vyterm;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This method performs velocity diffusion and forces mass conservation
|
|
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
|
|
// arrays holding the Fourier coefficients of the velocity field in
|
|
// X and Y. Diffusion in this space takes a simple form described as:
|
|
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
|
|
// and k is the wavenumber. The projection step forces the Fourier
|
|
// velocity vectors to be orthogonal to the vectors for each
|
|
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
|
|
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
|
|
float visc, int lb) {
|
|
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
|
|
int p;
|
|
|
|
cData xterm, yterm;
|
|
|
|
// gtidx is the domain location in x for this thread
|
|
if (gtidx < dx) {
|
|
for (p = 0; p < lb; p++) {
|
|
// fi is the domain location in y for this thread
|
|
int fi = gtidy + p;
|
|
|
|
if (fi < dy) {
|
|
int fj = fi * dx + gtidx;
|
|
xterm = vx[fj];
|
|
yterm = vy[fj];
|
|
|
|
// Compute the index of the wavenumber based on the
|
|
// data order produced by a standard NN FFT.
|
|
int iix = gtidx;
|
|
int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;
|
|
|
|
// Velocity diffusion
|
|
float kk = (float)(iix * iix + iiy * iiy); // k^2
|
|
float diff = 1.f / (1.f + visc * dt * kk);
|
|
xterm.x *= diff;
|
|
xterm.y *= diff;
|
|
yterm.x *= diff;
|
|
yterm.y *= diff;
|
|
|
|
// Velocity projection
|
|
if (kk > 0.f) {
|
|
float rkk = 1.f / kk;
|
|
// Real portion of velocity projection
|
|
float rkp = (iix * xterm.x + iiy * yterm.x);
|
|
// Imaginary portion of velocity projection
|
|
float ikp = (iix * xterm.y + iiy * yterm.y);
|
|
xterm.x -= rkk * rkp * iix;
|
|
xterm.y -= rkk * ikp * iix;
|
|
yterm.x -= rkk * rkp * iiy;
|
|
yterm.y -= rkk * ikp * iiy;
|
|
}
|
|
|
|
vx[fj] = xterm;
|
|
vy[fj] = yterm;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This method updates the velocity field 'v' using the two complex
|
|
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
|
|
// real components by 1/(dx*dy) to account for an unnormalized FFT.
|
|
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
|
|
int pdx, int dy, int lb, size_t pitch) {
|
|
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
|
|
int p;
|
|
|
|
float vxterm, vyterm;
|
|
cData nvterm;
|
|
|
|
// gtidx is the domain location in x for this thread
|
|
if (gtidx < dx) {
|
|
for (p = 0; p < lb; p++) {
|
|
// fi is the domain location in y for this thread
|
|
int fi = gtidy + p;
|
|
|
|
if (fi < dy) {
|
|
int fjr = fi * pdx + gtidx;
|
|
vxterm = vx[fjr];
|
|
vyterm = vy[fjr];
|
|
|
|
// Normalize the result of the inverse FFT
|
|
float scale = 1.f / (dx * dy);
|
|
nvterm.x = vxterm * scale;
|
|
nvterm.y = vyterm * scale;
|
|
|
|
cData *fj = (cData *)((char *)v + fi * pitch) + gtidx;
|
|
*fj = nvterm;
|
|
}
|
|
} // If this thread is inside the domain in Y
|
|
} // If this thread is inside the domain in X
|
|
}
|
|
|
|
// This method updates the particles by moving particle positions
|
|
// according to the velocity field and time step. That is, for each
|
|
// particle: p(t+1) = p(t) + dt * v(p(t)).
|
|
__global__ void advectParticles_k(Vertex *part, cData *v, int dx, int dy,
|
|
float dt, int lb, size_t pitch) {
|
|
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
|
|
int p;
|
|
|
|
// gtidx is the domain location in x for this thread
|
|
cData vterm;
|
|
Vertex pterm;
|
|
|
|
if (gtidx < dx) {
|
|
for (p = 0; p < lb; p++) {
|
|
// fi is the domain location in y for this thread
|
|
int fi = gtidy + p;
|
|
|
|
if (fi < dy) {
|
|
int fj = fi * dx + gtidx;
|
|
pterm = part[fj];
|
|
|
|
int xvi = ((int)(pterm.x * dx));
|
|
int yvi = ((int)(pterm.y * dy));
|
|
vterm = *((cData *)((char *)v + yvi * pitch) + xvi);
|
|
|
|
pterm.x += dt * vterm.x;
|
|
pterm.x = pterm.x - (int)pterm.x;
|
|
pterm.x += 1.f;
|
|
pterm.x = pterm.x - (int)pterm.x;
|
|
pterm.y += dt * vterm.y;
|
|
pterm.y = pterm.y - (int)pterm.y;
|
|
pterm.y += 1.f;
|
|
pterm.y = pterm.y - (int)pterm.y;
|
|
|
|
part[fj] = pterm;
|
|
}
|
|
} // If this thread is inside the domain in Y
|
|
} // If this thread is inside the domain in X
|
|
}
|
|
|
|
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
|
|
float fy, int r, size_t tPitch) {
|
|
dim3 tids(2 * r + 1, 2 * r + 1);
|
|
|
|
addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch);
|
|
getLastCudaError("addForces_k failed.");
|
|
}
|
|
|
|
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
|
|
int dy, float dt, size_t tPitch) {
|
|
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
|
|
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
|
|
|
|
dim3 tids(TIDSX, TIDSY);
|
|
|
|
updateTexture(v, DIM * sizeof(cData), DIM, tPitch);
|
|
advectVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY,
|
|
texObj);
|
|
|
|
getLastCudaError("advectVelocity_k failed.");
|
|
}
|
|
|
|
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
|
|
float visc, size_t tPitch) {
|
|
// Forward FFT
|
|
// cufftExecR2C(planr2c, (cufftReal*)vx, (cufftComplex*)vx);
|
|
// cufftExecR2C(planr2c, (cufftReal*)vy, (cufftComplex*)vy);
|
|
|
|
uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
|
|
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1);
|
|
|
|
uint3 tids = make_uint3(TIDSX, TIDSY, 1);
|
|
|
|
diffuseProject_k<<<grid, tids>>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY);
|
|
getLastCudaError("diffuseProject_k failed.");
|
|
|
|
// Inverse FFT
|
|
// cufftExecC2R(planc2r, (cufftComplex*)vx, (cufftReal*)vx);
|
|
// cufftExecC2R(planc2r, (cufftComplex*)vy, (cufftReal*)vy);
|
|
}
|
|
|
|
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
|
|
int dy, size_t tPitch) {
|
|
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
|
|
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
|
|
|
|
dim3 tids(TIDSX, TIDSY);
|
|
|
|
updateVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY,
|
|
tPitch);
|
|
getLastCudaError("updateVelocity_k failed.");
|
|
}
|
|
|
|
extern "C" void advectParticles(Vertex *p, cData *v, int dx, int dy, float dt,
|
|
size_t tPitch) {
|
|
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
|
|
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
|
|
|
|
dim3 tids(TIDSX, TIDSY);
|
|
|
|
advectParticles_k<<<grid, tids>>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch);
|
|
getLastCudaError("advectParticles_k failed.");
|
|
}
|