mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
164 lines
6.0 KiB
Plaintext
164 lines
6.0 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Example of program using the interval_gpu<T> template class and operators:
|
|
* Search for roots of a function using an interval Newton method.
|
|
*
|
|
* Use the command-line argument "--n=<N>" to select which GPU implementation to
|
|
* use,
|
|
* otherwise the naive implementation will be used by default.
|
|
* 0: the naive implementation
|
|
* 1: the optimized implementation
|
|
* 2: the recursive implementation
|
|
*
|
|
*/
|
|
|
|
const static char *sSDKsample = "Interval Computing";
|
|
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
#include "helper_cuda.h"
|
|
#include "interval.h"
|
|
#include "cuda_interval.h"
|
|
#include "cpu_interval.h"
|
|
|
|
int main(int argc, char *argv[]) {
|
|
int implementation_choice = 0;
|
|
|
|
printf("[%s] starting ...\n\n", sSDKsample);
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "n")) {
|
|
implementation_choice =
|
|
getCmdLineArgumentInt(argc, (const char **)argv, "n");
|
|
}
|
|
|
|
// Pick the best GPU available, or if the developer selects one at the command
|
|
// line
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
cudaDeviceProp deviceProp;
|
|
cudaGetDeviceProperties(&deviceProp, devID);
|
|
printf("> GPU Device has Compute Capabilities SM %d.%d\n\n", deviceProp.major,
|
|
deviceProp.minor);
|
|
|
|
switch (implementation_choice) {
|
|
case 0:
|
|
printf("GPU naive implementation\n");
|
|
break;
|
|
|
|
case 1:
|
|
printf("GPU optimized implementation\n");
|
|
break;
|
|
|
|
case 2:
|
|
printf("GPU recursive implementation (requires Compute SM 2.0+)\n");
|
|
break;
|
|
|
|
default:
|
|
printf("GPU naive implementation\n");
|
|
}
|
|
|
|
interval_gpu<T> *d_result;
|
|
int *d_nresults;
|
|
int *h_nresults = new int[THREADS];
|
|
cudaEvent_t start, stop;
|
|
|
|
CHECKED_CALL(cudaSetDevice(devID));
|
|
CHECKED_CALL(cudaMalloc((void **)&d_result,
|
|
THREADS * DEPTH_RESULT * sizeof(*d_result)));
|
|
CHECKED_CALL(cudaMalloc((void **)&d_nresults, THREADS * sizeof(*d_nresults)));
|
|
CHECKED_CALL(cudaEventCreate(&start));
|
|
CHECKED_CALL(cudaEventCreate(&stop));
|
|
|
|
// We need L1 cache to store the stack (only applicable to sm_20 and higher)
|
|
CHECKED_CALL(
|
|
cudaFuncSetCacheConfig(test_interval_newton<T>, cudaFuncCachePreferL1));
|
|
|
|
// Increase the stack size large enough for the non-inlined and recursive
|
|
// function calls (only applicable to sm_20 and higher)
|
|
CHECKED_CALL(cudaDeviceSetLimit(cudaLimitStackSize, 8192));
|
|
|
|
interval_gpu<T> i(0.01f, 4.0f);
|
|
std::cout << "Searching for roots in [" << i.lower() << ", " << i.upper()
|
|
<< "]...\n";
|
|
|
|
CHECKED_CALL(cudaEventRecord(start, 0));
|
|
|
|
for (int it = 0; it < NUM_RUNS; ++it) {
|
|
test_interval_newton<T><<<GRID_SIZE, BLOCK_SIZE>>>(d_result, d_nresults, i,
|
|
implementation_choice);
|
|
CHECKED_CALL(cudaGetLastError());
|
|
}
|
|
|
|
CHECKED_CALL(cudaEventRecord(stop, 0));
|
|
CHECKED_CALL(cudaDeviceSynchronize());
|
|
|
|
I_CPU *h_result = new I_CPU[THREADS * DEPTH_RESULT];
|
|
CHECKED_CALL(cudaMemcpy(h_result, d_result,
|
|
THREADS * DEPTH_RESULT * sizeof(*d_result),
|
|
cudaMemcpyDeviceToHost));
|
|
CHECKED_CALL(cudaMemcpy(h_nresults, d_nresults, THREADS * sizeof(*d_nresults),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
std::cout << "Found " << h_nresults[0]
|
|
<< " intervals that may contain the root(s)\n";
|
|
std::cout.precision(15);
|
|
|
|
for (int i = 0; i != h_nresults[0]; ++i) {
|
|
std::cout << " i[" << i << "] ="
|
|
<< " [" << h_result[THREADS * i + 0].lower() << ", "
|
|
<< h_result[THREADS * i + 0].upper() << "]\n";
|
|
}
|
|
|
|
float time;
|
|
CHECKED_CALL(cudaEventElapsedTime(&time, start, stop));
|
|
std::cout << "Number of equations solved: " << THREADS << "\n";
|
|
std::cout << "Time per equation: "
|
|
<< 1000000.0f * (time / (float)(THREADS)) / NUM_RUNS << " us\n";
|
|
|
|
CHECKED_CALL(cudaEventDestroy(start));
|
|
CHECKED_CALL(cudaEventDestroy(stop));
|
|
CHECKED_CALL(cudaFree(d_result));
|
|
CHECKED_CALL(cudaFree(d_nresults));
|
|
|
|
// Compute the results using a CPU implementation based on the Boost library
|
|
I_CPU i_cpu(0.01f, 4.0f);
|
|
I_CPU *h_result_cpu = new I_CPU[THREADS * DEPTH_RESULT];
|
|
int *h_nresults_cpu = new int[THREADS];
|
|
test_interval_newton_cpu<I_CPU>(h_result_cpu, h_nresults_cpu, i_cpu);
|
|
|
|
// Compare the CPU and GPU results
|
|
bool bTestResult =
|
|
checkAgainstHost(h_nresults, h_nresults_cpu, h_result, h_result_cpu);
|
|
|
|
delete[] h_result_cpu;
|
|
delete[] h_nresults_cpu;
|
|
delete[] h_result;
|
|
delete[] h_nresults;
|
|
|
|
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|