mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:15:55 +08:00
321 lines
11 KiB
C++
321 lines
11 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Matrix multiplication: C = A * B.
|
|
* Host code.
|
|
*
|
|
* This sample implements matrix multiplication using the CUDA driver API.
|
|
* It has been written for clarity of exposition to illustrate various CUDA
|
|
* programming principles, not with the goal of providing the most
|
|
* performant generic kernel for matrix multiplication.
|
|
*
|
|
* CUBLAS provides high-performance matrix multiplication.
|
|
* See also:
|
|
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
|
|
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08),
|
|
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
|
|
*
|
|
* Volkov, V. 2010. Better performance at lower occupancy,
|
|
* GPU Technology Conference 2~010 (GTC 2010).
|
|
*
|
|
*/
|
|
|
|
// includes, system
|
|
#include <builtin_types.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <iostream>
|
|
#include <cstring>
|
|
|
|
// includes, project, CUDA
|
|
#include <cuda.h>
|
|
#include <helper_cuda_drvapi.h>
|
|
#include <helper_image.h>
|
|
#include <helper_string.h>
|
|
#include <helper_timer.h>
|
|
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include "matrixMul.h"
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// declaration, forward
|
|
void runTest(int argc, char **argv);
|
|
void randomInit(float *, int);
|
|
|
|
extern "C" void computeGold(float *, const float *, const float *, unsigned int,
|
|
unsigned int, unsigned int);
|
|
|
|
static int initCUDA(int argc, char **argv, CUfunction *pMatrixMul,
|
|
int *blk_size);
|
|
|
|
#ifndef FATBIN_FILE
|
|
#define FATBIN_FILE "matrixMul_kernel64.fatbin"
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Globals
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
CUdevice cuDevice;
|
|
CUcontext cuContext;
|
|
CUmodule cuModule;
|
|
size_t totalGlobalMem;
|
|
|
|
const char *sSDKsample = "matrixMulDrv (Driver API)";
|
|
|
|
void constantInit(float *data, int size, float val) {
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = val;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf("[ %s ]\n", sSDKsample);
|
|
|
|
runTest(argc, argv);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Run a simple test for CUDA
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void runTest(int argc, char **argv) {
|
|
// initialize CUDA
|
|
CUfunction matrixMul = NULL;
|
|
int block_size = 0;
|
|
|
|
initCUDA(argc, argv, &matrixMul, &block_size);
|
|
|
|
// set seed for rand()
|
|
srand(2006);
|
|
|
|
// allocate host memory for matrices A and B
|
|
unsigned int size_A = WA * HA;
|
|
unsigned int mem_size_A = sizeof(float) * size_A;
|
|
float *h_A = reinterpret_cast<float *>(malloc(mem_size_A));
|
|
unsigned int size_B = WB * HB;
|
|
unsigned int mem_size_B = sizeof(float) * size_B;
|
|
float *h_B = reinterpret_cast<float *>(malloc(mem_size_B));
|
|
|
|
// initialize host memory
|
|
const float valB = 0.01f;
|
|
constantInit(h_A, size_A, 1.0f);
|
|
constantInit(h_B, size_B, valB);
|
|
|
|
// allocate device memory
|
|
CUdeviceptr d_A;
|
|
checkCudaErrors(cuMemAlloc(&d_A, mem_size_A));
|
|
CUdeviceptr d_B;
|
|
checkCudaErrors(cuMemAlloc(&d_B, mem_size_B));
|
|
|
|
// copy host memory to device
|
|
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, mem_size_A));
|
|
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, mem_size_B));
|
|
|
|
// allocate device memory for result
|
|
size_t size_C = WC * HC;
|
|
size_t mem_size_C = sizeof(float) * size_C;
|
|
|
|
CUdeviceptr d_C;
|
|
checkCudaErrors(cuMemAlloc(&d_C, mem_size_C));
|
|
|
|
// allocate mem for the result on host side
|
|
float *h_C = reinterpret_cast<float *>(malloc(mem_size_C));
|
|
|
|
// create and start timer
|
|
StopWatchInterface *timer = NULL;
|
|
sdkCreateTimer(&timer);
|
|
|
|
// start the timer
|
|
sdkStartTimer(&timer);
|
|
|
|
// There are two ways to launch CUDA kernels via the Driver API.
|
|
// In this CUDA Sample, we illustrate both ways to pass parameters
|
|
// and specify parameters. By default we use the simpler method.
|
|
dim3 block(block_size, block_size, 1);
|
|
dim3 grid(WC / block_size, HC / block_size, 1);
|
|
|
|
if (1) {
|
|
// This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel
|
|
// Launching (simplier method)
|
|
size_t Matrix_Width_A = (size_t)WA;
|
|
size_t Matrix_Width_B = (size_t)WB;
|
|
void *args[5] = {&d_C, &d_A, &d_B, &Matrix_Width_A, &Matrix_Width_B};
|
|
// new CUDA 4.0 Driver API Kernel launch call
|
|
checkCudaErrors(cuLaunchKernel(
|
|
matrixMul, grid.x, grid.y, grid.z, block.x, block.y, block.z,
|
|
2 * block_size * block_size * sizeof(float), NULL, args, NULL));
|
|
} else {
|
|
// This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel
|
|
// Launching (advanced method)
|
|
int offset = 0;
|
|
char argBuffer[256];
|
|
|
|
// pass in launch parameters (not actually de-referencing CUdeviceptr).
|
|
// CUdeviceptr is storing the value of the parameters
|
|
*(reinterpret_cast<CUdeviceptr *>(&argBuffer[offset])) = d_C;
|
|
offset += sizeof(d_C);
|
|
*(reinterpret_cast<CUdeviceptr *>(&argBuffer[offset])) = d_A;
|
|
offset += sizeof(d_A);
|
|
*(reinterpret_cast<CUdeviceptr *>(&argBuffer[offset])) = d_B;
|
|
offset += sizeof(d_B);
|
|
|
|
size_t Matrix_Width_A = (size_t)WA;
|
|
size_t Matrix_Width_B = (size_t)WB;
|
|
|
|
*(reinterpret_cast<CUdeviceptr *>(&argBuffer[offset])) = Matrix_Width_A;
|
|
offset += sizeof(Matrix_Width_A);
|
|
*(reinterpret_cast<CUdeviceptr *>(&argBuffer[offset])) = Matrix_Width_B;
|
|
offset += sizeof(Matrix_Width_B);
|
|
|
|
void *kernel_launch_config[5] = {CU_LAUNCH_PARAM_BUFFER_POINTER, argBuffer,
|
|
CU_LAUNCH_PARAM_BUFFER_SIZE, &offset,
|
|
CU_LAUNCH_PARAM_END};
|
|
|
|
// new CUDA 4.0 Driver API Kernel launch call
|
|
checkCudaErrors(cuLaunchKernel(
|
|
matrixMul, grid.x, grid.y, grid.z, block.x, block.y, block.z,
|
|
2 * block_size * block_size * sizeof(float), NULL, NULL,
|
|
reinterpret_cast<void **>(&kernel_launch_config)));
|
|
}
|
|
|
|
// copy result from device to host
|
|
checkCudaErrors(cuMemcpyDtoH(reinterpret_cast<void *>(h_C), d_C, mem_size_C));
|
|
|
|
// stop and destroy timer
|
|
sdkStopTimer(&timer);
|
|
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
|
sdkDeleteTimer(&timer);
|
|
|
|
printf("Checking computed result for correctness: ");
|
|
bool correct = true;
|
|
|
|
for (int i = 0; i < static_cast<int>(WC * HC); i++) {
|
|
if (fabs(h_C[i] - (WA * valB)) > 1e-5) {
|
|
printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > 1e-5\n", i,
|
|
h_C[i], WA * valB);
|
|
correct = false;
|
|
}
|
|
}
|
|
|
|
printf("%s\n", correct ? "Result = PASS" : "Result = FAIL");
|
|
|
|
printf("\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n");
|
|
|
|
// clean up memory
|
|
free(h_A);
|
|
free(h_B);
|
|
free(h_C);
|
|
checkCudaErrors(cuMemFree(d_A));
|
|
checkCudaErrors(cuMemFree(d_B));
|
|
checkCudaErrors(cuMemFree(d_C));
|
|
checkCudaErrors(cuCtxDestroy(cuContext));
|
|
}
|
|
|
|
// Allocates a matrix with random float entries.
|
|
void randomInit(float *data, int size) {
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = rand() / static_cast<float>(RAND_MAX);
|
|
}
|
|
}
|
|
|
|
static int initCUDA(int argc, char **argv, CUfunction *pMatrixMul,
|
|
int *blk_size) {
|
|
CUfunction cuFunction = 0;
|
|
int major = 0, minor = 0;
|
|
char deviceName[100];
|
|
|
|
cuDevice = findCudaDeviceDRV(argc, (const char **)argv);
|
|
|
|
// get compute capabilities and the devicename
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
|
|
checkCudaErrors(cuDeviceGetName(deviceName, sizeof(deviceName), cuDevice));
|
|
printf("> GPU Device has SM %d.%d compute capability\n", major, minor);
|
|
|
|
checkCudaErrors(cuDeviceTotalMem(&totalGlobalMem, cuDevice));
|
|
printf(" Total amount of global memory: %llu bytes\n",
|
|
(long long unsigned int)totalGlobalMem);
|
|
|
|
checkCudaErrors(cuCtxCreate(&cuContext, 0, cuDevice));
|
|
|
|
// first search for the module path before we load the results
|
|
std::string module_path;
|
|
std::ostringstream fatbin;
|
|
|
|
if (!findFatbinPath(FATBIN_FILE, module_path, argv, fatbin)) {
|
|
exit(EXIT_FAILURE);
|
|
} else {
|
|
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
|
|
}
|
|
|
|
if (!fatbin.str().size()) {
|
|
printf("fatbin file empty. exiting..\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Create module from binary file (FATBIN)
|
|
checkCudaErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str()));
|
|
|
|
// select the suitable kernel function
|
|
const char *kernels[] = {"matrixMul_bs32_64bit", "matrixMul_bs16_64bit",
|
|
"matrixMul_bs8_64bit"};
|
|
|
|
int idx = 0;
|
|
int block_size = 32;
|
|
while (idx < 3) {
|
|
int threadsPerBlock = 0;
|
|
int blocksPerGrid = 0;
|
|
|
|
checkCudaErrors(cuModuleGetFunction(&cuFunction, cuModule, kernels[idx]));
|
|
checkCudaErrors(cuOccupancyMaxPotentialBlockSize(
|
|
&blocksPerGrid, &threadsPerBlock, cuFunction, 0,
|
|
2 * block_size * block_size * sizeof(float), 0));
|
|
if (block_size * block_size <= threadsPerBlock) {
|
|
printf("> %d block size selected\n", block_size);
|
|
break;
|
|
} else {
|
|
block_size /= 2;
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
*pMatrixMul = cuFunction;
|
|
*blk_size = block_size;
|
|
|
|
return 0;
|
|
}
|