mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:05:51 +08:00
369 lines
15 KiB
Plaintext
369 lines
15 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Computation of eigenvalues of a large symmetric, tridiagonal matrix */
|
|
|
|
// includes, system
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
// includes, project
|
|
#include "helper_functions.h"
|
|
#include "helper_cuda.h"
|
|
#include "config.h"
|
|
#include "structs.h"
|
|
#include "util.h"
|
|
#include "matlab.h"
|
|
|
|
#include "bisect_large.cuh"
|
|
|
|
// includes, kernels
|
|
#include "bisect_kernel_large.cuh"
|
|
#include "bisect_kernel_large_onei.cuh"
|
|
#include "bisect_kernel_large_multi.cuh"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Initialize variables and memory for result
|
|
//! @param result handles to memory
|
|
//! @param matrix_size size of the matrix
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void initResultDataLargeMatrix(ResultDataLarge &result,
|
|
const unsigned int mat_size) {
|
|
// helper variables to initialize memory
|
|
unsigned int zero = 0;
|
|
unsigned int mat_size_f = sizeof(float) * mat_size;
|
|
unsigned int mat_size_ui = sizeof(unsigned int) * mat_size;
|
|
|
|
float *tempf = (float *)malloc(mat_size_f);
|
|
unsigned int *tempui = (unsigned int *)malloc(mat_size_ui);
|
|
|
|
for (unsigned int i = 0; i < mat_size; ++i) {
|
|
tempf[i] = 0.0f;
|
|
tempui[i] = 0;
|
|
}
|
|
|
|
// number of intervals containing only one eigenvalue after the first step
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_num_one, sizeof(unsigned int)));
|
|
checkCudaErrors(cudaMemcpy(result.g_num_one, &zero, sizeof(unsigned int),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
// number of (thread) blocks of intervals with multiple eigenvalues after
|
|
// the first iteration
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&result.g_num_blocks_mult, sizeof(unsigned int)));
|
|
checkCudaErrors(cudaMemcpy(result.g_num_blocks_mult, &zero,
|
|
sizeof(unsigned int), cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_left_one, mat_size_f));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_right_one, mat_size_f));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_pos_one, mat_size_ui));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_left_mult, mat_size_f));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_right_mult, mat_size_f));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_left_count_mult, mat_size_ui));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_right_count_mult, mat_size_ui));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(result.g_left_one, tempf, mat_size_f, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_right_one, tempf, mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_pos_one, tempui, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cudaMemcpy(result.g_left_mult, tempf, mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_right_mult, tempf, mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_left_count_mult, tempui, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_right_count_mult, tempui, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_blocks_mult, mat_size_ui));
|
|
checkCudaErrors(cudaMemcpy(result.g_blocks_mult, tempui, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_blocks_mult_sum, mat_size_ui));
|
|
checkCudaErrors(cudaMemcpy(result.g_blocks_mult_sum, tempui, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_lambda_mult, mat_size_f));
|
|
checkCudaErrors(cudaMemcpy(result.g_lambda_mult, tempf, mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_pos_mult, mat_size_ui));
|
|
checkCudaErrors(cudaMemcpy(result.g_pos_mult, tempf, mat_size_ui,
|
|
cudaMemcpyHostToDevice));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Cleanup result memory
|
|
//! @param result handles to memory
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void cleanupResultDataLargeMatrix(ResultDataLarge &result) {
|
|
checkCudaErrors(cudaFree(result.g_num_one));
|
|
checkCudaErrors(cudaFree(result.g_num_blocks_mult));
|
|
checkCudaErrors(cudaFree(result.g_left_one));
|
|
checkCudaErrors(cudaFree(result.g_right_one));
|
|
checkCudaErrors(cudaFree(result.g_pos_one));
|
|
checkCudaErrors(cudaFree(result.g_left_mult));
|
|
checkCudaErrors(cudaFree(result.g_right_mult));
|
|
checkCudaErrors(cudaFree(result.g_left_count_mult));
|
|
checkCudaErrors(cudaFree(result.g_right_count_mult));
|
|
checkCudaErrors(cudaFree(result.g_blocks_mult));
|
|
checkCudaErrors(cudaFree(result.g_blocks_mult_sum));
|
|
checkCudaErrors(cudaFree(result.g_lambda_mult));
|
|
checkCudaErrors(cudaFree(result.g_pos_mult));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Run the kernels to compute the eigenvalues for large matrices
|
|
//! @param input handles to input data
|
|
//! @param result handles to result data
|
|
//! @param mat_size matrix size
|
|
//! @param precision desired precision of eigenvalues
|
|
//! @param lg lower limit of Gerschgorin interval
|
|
//! @param ug upper limit of Gerschgorin interval
|
|
//! @param iterations number of iterations (for timing)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void computeEigenvaluesLargeMatrix(const InputData &input,
|
|
const ResultDataLarge &result,
|
|
const unsigned int mat_size,
|
|
const float precision, const float lg,
|
|
const float ug,
|
|
const unsigned int iterations) {
|
|
dim3 blocks(1, 1, 1);
|
|
dim3 threads(MAX_THREADS_BLOCK, 1, 1);
|
|
|
|
StopWatchInterface *timer_step1 = NULL;
|
|
StopWatchInterface *timer_step2_one = NULL;
|
|
StopWatchInterface *timer_step2_mult = NULL;
|
|
StopWatchInterface *timer_total = NULL;
|
|
sdkCreateTimer(&timer_step1);
|
|
sdkCreateTimer(&timer_step2_one);
|
|
sdkCreateTimer(&timer_step2_mult);
|
|
sdkCreateTimer(&timer_total);
|
|
|
|
sdkStartTimer(&timer_total);
|
|
|
|
// do for multiple iterations to improve timing accuracy
|
|
for (unsigned int iter = 0; iter < iterations; ++iter) {
|
|
sdkStartTimer(&timer_step1);
|
|
bisectKernelLarge<<<blocks, threads>>>(
|
|
input.g_a, input.g_b, mat_size, lg, ug, 0, mat_size, precision,
|
|
result.g_num_one, result.g_num_blocks_mult, result.g_left_one,
|
|
result.g_right_one, result.g_pos_one, result.g_left_mult,
|
|
result.g_right_mult, result.g_left_count_mult,
|
|
result.g_right_count_mult, result.g_blocks_mult,
|
|
result.g_blocks_mult_sum);
|
|
|
|
getLastCudaError("Kernel launch failed.");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&timer_step1);
|
|
|
|
// get the number of intervals containing one eigenvalue after the first
|
|
// processing step
|
|
unsigned int num_one_intervals;
|
|
checkCudaErrors(cudaMemcpy(&num_one_intervals, result.g_num_one,
|
|
sizeof(unsigned int), cudaMemcpyDeviceToHost));
|
|
|
|
dim3 grid_onei;
|
|
grid_onei.x = getNumBlocksLinear(num_one_intervals, MAX_THREADS_BLOCK);
|
|
dim3 threads_onei;
|
|
// use always max number of available threads to better balance load times
|
|
// for matrix data
|
|
threads_onei.x = MAX_THREADS_BLOCK;
|
|
|
|
// compute eigenvalues for intervals that contained only one eigenvalue
|
|
// after the first processing step
|
|
sdkStartTimer(&timer_step2_one);
|
|
|
|
bisectKernelLarge_OneIntervals<<<grid_onei, threads_onei>>>(
|
|
input.g_a, input.g_b, mat_size, num_one_intervals, result.g_left_one,
|
|
result.g_right_one, result.g_pos_one, precision);
|
|
|
|
getLastCudaError("bisectKernelLarge_OneIntervals() FAILED.");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&timer_step2_one);
|
|
|
|
// process intervals that contained more than one eigenvalue after
|
|
// the first processing step
|
|
|
|
// get the number of blocks of intervals that contain, in total when
|
|
// each interval contains only one eigenvalue, not more than
|
|
// MAX_THREADS_BLOCK threads
|
|
unsigned int num_blocks_mult = 0;
|
|
checkCudaErrors(cudaMemcpy(&num_blocks_mult, result.g_num_blocks_mult,
|
|
sizeof(unsigned int), cudaMemcpyDeviceToHost));
|
|
|
|
// setup the execution environment
|
|
dim3 grid_mult(num_blocks_mult, 1, 1);
|
|
dim3 threads_mult(MAX_THREADS_BLOCK, 1, 1);
|
|
|
|
sdkStartTimer(&timer_step2_mult);
|
|
|
|
bisectKernelLarge_MultIntervals<<<grid_mult, threads_mult>>>(
|
|
input.g_a, input.g_b, mat_size, result.g_blocks_mult,
|
|
result.g_blocks_mult_sum, result.g_left_mult, result.g_right_mult,
|
|
result.g_left_count_mult, result.g_right_count_mult,
|
|
result.g_lambda_mult, result.g_pos_mult, precision);
|
|
|
|
getLastCudaError("bisectKernelLarge_MultIntervals() FAILED.");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&timer_step2_mult);
|
|
}
|
|
|
|
sdkStopTimer(&timer_total);
|
|
|
|
printf("Average time step 1: %f ms\n",
|
|
sdkGetTimerValue(&timer_step1) / (float)iterations);
|
|
printf("Average time step 2, one intervals: %f ms\n",
|
|
sdkGetTimerValue(&timer_step2_one) / (float)iterations);
|
|
printf("Average time step 2, mult intervals: %f ms\n",
|
|
sdkGetTimerValue(&timer_step2_mult) / (float)iterations);
|
|
|
|
printf("Average time TOTAL: %f ms\n",
|
|
sdkGetTimerValue(&timer_total) / (float)iterations);
|
|
|
|
sdkDeleteTimer(&timer_step1);
|
|
sdkDeleteTimer(&timer_step2_one);
|
|
sdkDeleteTimer(&timer_step2_mult);
|
|
sdkDeleteTimer(&timer_total);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Process the result, that is obtain result from device and do simple sanity
|
|
//! checking
|
|
//! @param input handles to input data
|
|
//! @param result handles to result data
|
|
//! @param mat_size matrix size
|
|
//! @param filename output filename
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool processResultDataLargeMatrix(const InputData &input,
|
|
const ResultDataLarge &result,
|
|
const unsigned int mat_size,
|
|
const char *filename,
|
|
const unsigned int user_defined,
|
|
char *exec_path) {
|
|
bool bCompareResult = false;
|
|
const unsigned int mat_size_ui = sizeof(unsigned int) * mat_size;
|
|
const unsigned int mat_size_f = sizeof(float) * mat_size;
|
|
|
|
// copy data from intervals that contained more than one eigenvalue after
|
|
// the first processing step
|
|
float *lambda_mult = (float *)malloc(sizeof(float) * mat_size);
|
|
checkCudaErrors(cudaMemcpy(lambda_mult, result.g_lambda_mult,
|
|
sizeof(float) * mat_size, cudaMemcpyDeviceToHost));
|
|
unsigned int *pos_mult =
|
|
(unsigned int *)malloc(sizeof(unsigned int) * mat_size);
|
|
checkCudaErrors(cudaMemcpy(pos_mult, result.g_pos_mult,
|
|
sizeof(unsigned int) * mat_size,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
unsigned int *blocks_mult_sum =
|
|
(unsigned int *)malloc(sizeof(unsigned int) * mat_size);
|
|
checkCudaErrors(cudaMemcpy(blocks_mult_sum, result.g_blocks_mult_sum,
|
|
sizeof(unsigned int) * mat_size,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
unsigned int num_one_intervals;
|
|
checkCudaErrors(cudaMemcpy(&num_one_intervals, result.g_num_one,
|
|
sizeof(unsigned int), cudaMemcpyDeviceToHost));
|
|
|
|
unsigned int sum_blocks_mult = mat_size - num_one_intervals;
|
|
|
|
// copy data for intervals that contained one eigenvalue after the first
|
|
// processing step
|
|
float *left_one = (float *)malloc(mat_size_f);
|
|
float *right_one = (float *)malloc(mat_size_f);
|
|
unsigned int *pos_one = (unsigned int *)malloc(mat_size_ui);
|
|
checkCudaErrors(cudaMemcpy(left_one, result.g_left_one, mat_size_f,
|
|
cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(cudaMemcpy(right_one, result.g_right_one, mat_size_f,
|
|
cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(cudaMemcpy(pos_one, result.g_pos_one, mat_size_ui,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
// extract eigenvalues
|
|
float *eigenvals = (float *)malloc(mat_size_f);
|
|
|
|
// singleton intervals generated in the second step
|
|
for (unsigned int i = 0; i < sum_blocks_mult; ++i) {
|
|
eigenvals[pos_mult[i] - 1] = lambda_mult[i];
|
|
}
|
|
|
|
// singleton intervals generated in the first step
|
|
unsigned int index = 0;
|
|
|
|
for (unsigned int i = 0; i < num_one_intervals; ++i, ++index) {
|
|
eigenvals[pos_one[i] - 1] = left_one[i];
|
|
}
|
|
|
|
if (1 == user_defined) {
|
|
// store result
|
|
writeTridiagSymMatlab(filename, input.a, input.b + 1, eigenvals, mat_size);
|
|
// getLastCudaError( sdkWriteFilef( filename, eigenvals, mat_size, 0.0f));
|
|
|
|
printf("User requests non-default argument(s), skipping self-check!\n");
|
|
bCompareResult = true;
|
|
} else {
|
|
// compare with reference solution
|
|
|
|
float *reference = NULL;
|
|
unsigned int input_data_size = 0;
|
|
|
|
char *ref_path = sdkFindFilePath("reference.dat", exec_path);
|
|
assert(NULL != ref_path);
|
|
sdkReadFile(ref_path, &reference, &input_data_size, false);
|
|
assert(input_data_size == mat_size);
|
|
|
|
// there's an imprecision of Sturm count computation which makes an
|
|
// additional offset necessary
|
|
float tolerance = 1.0e-5f + 5.0e-6f;
|
|
|
|
if (sdkCompareL2fe(reference, eigenvals, mat_size, tolerance) == true) {
|
|
bCompareResult = true;
|
|
} else {
|
|
bCompareResult = false;
|
|
}
|
|
|
|
free(ref_path);
|
|
free(reference);
|
|
}
|
|
|
|
freePtr(eigenvals);
|
|
freePtr(lambda_mult);
|
|
freePtr(pos_mult);
|
|
freePtr(blocks_mult_sum);
|
|
freePtr(left_one);
|
|
freePtr(right_one);
|
|
freePtr(pos_one);
|
|
|
|
return bCompareResult;
|
|
}
|