mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 15:09:17 +08:00
381 lines
12 KiB
Plaintext
381 lines
12 KiB
Plaintext
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// simpleCUFFT_2d_MGPU.cu
|
|
//
|
|
// This sample code demonstrate the use of CUFFT library for 2D data on multiple GPU.
|
|
// Example showing the use of CUFFT for solving 2D-POISSON equation using FFT on multiple GPU.
|
|
// For reference we have used the equation given in http://www.bu.edu/pasi/files/2011/07/
|
|
// Lecture83.pdf
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// System includes
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
//CUFFT Header file
|
|
#include <cufftXt.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
// Complex data type
|
|
typedef float2 Complex;
|
|
|
|
// Data configuration
|
|
const int GPU_COUNT = 2;
|
|
const int BSZ_Y = 4;
|
|
const int BSZ_X = 4;
|
|
|
|
// Forward Declaration
|
|
void solvePoissonEquation(cudaLibXtDesc *, cudaLibXtDesc *, float **, int, int);
|
|
|
|
__global__ void solvePoisson(cufftComplex *, cufftComplex *, float *, int, int,
|
|
int n_gpu);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf(
|
|
"\nPoisson equation using CUFFT library on Multiple GPUs is "
|
|
"starting...\n\n");
|
|
|
|
int GPU_N;
|
|
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
|
|
|
|
if (GPU_N < GPU_COUNT) {
|
|
printf("No. of GPU on node %d\n", GPU_N);
|
|
printf("Two GPUs are required to run simpleCUFFT_2d_MGPU sample code\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int *major_minor = (int *)malloc(sizeof(int) * GPU_N * 2);
|
|
int found2IdenticalGPUs = 0;
|
|
int nGPUs = 2;
|
|
int *whichGPUs;
|
|
whichGPUs = (int *)malloc(sizeof(int) * nGPUs);
|
|
|
|
for (int i = 0; i < GPU_N; i++) {
|
|
cudaDeviceProp deviceProp;
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
|
|
major_minor[i * 2] = deviceProp.major;
|
|
major_minor[i * 2 + 1] = deviceProp.minor;
|
|
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
|
|
deviceProp.name, deviceProp.major, deviceProp.minor);
|
|
}
|
|
|
|
for (int i = 0; i < GPU_N; i++) {
|
|
for (int j = i + 1; j < GPU_N; j++) {
|
|
if ((major_minor[i * 2] == major_minor[j * 2]) &&
|
|
(major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) {
|
|
whichGPUs[0] = i;
|
|
whichGPUs[1] = j;
|
|
found2IdenticalGPUs = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found2IdenticalGPUs) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(major_minor);
|
|
if (!found2IdenticalGPUs) {
|
|
printf(
|
|
"No Two GPUs with same architecture found\nWaiving simpleCUFFT_2d_MGPU "
|
|
"sample\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int N = 64;
|
|
float xMAX = 1.0f, xMIN = 0.0f, yMIN = 0.0f, h = (xMAX - xMIN) / ((float)N),
|
|
s = 0.1f, s2 = s * s;
|
|
float *x, *y, *f, *u_a, r2;
|
|
|
|
x = (float *)malloc(sizeof(float) * N * N);
|
|
y = (float *)malloc(sizeof(float) * N * N);
|
|
f = (float *)malloc(sizeof(float) * N * N);
|
|
u_a = (float *)malloc(sizeof(float) * N * N);
|
|
|
|
for (int j = 0; j < N; j++)
|
|
for (int i = 0; i < N; i++) {
|
|
x[N * j + i] = xMIN + i * h;
|
|
y[N * j + i] = yMIN + j * h;
|
|
r2 = (x[N * j + i] - 0.5f) * (x[N * j + i] - 0.5f) +
|
|
(y[N * j + i] - 0.5f) * (y[N * j + i] - 0.5f);
|
|
f[N * j + i] = (r2 - 2 * s2) / (s2 * s2) * exp(-r2 / (2 * s2));
|
|
u_a[N * j + i] = exp(-r2 / (2 * s2)); // analytical solution
|
|
}
|
|
|
|
float *k, *d_k[GPU_COUNT];
|
|
k = (float *)malloc(sizeof(float) * N);
|
|
for (int i = 0; i <= N / 2; i++) {
|
|
k[i] = i * 2 * (float)M_PI;
|
|
}
|
|
for (int i = N / 2 + 1; i < N; i++) {
|
|
k[i] = (i - N) * 2 * (float)M_PI;
|
|
}
|
|
|
|
// Create a complex variable on host
|
|
Complex *h_f = (Complex *)malloc(sizeof(Complex) * N * N);
|
|
|
|
// Initialize the memory for the signal
|
|
for (int i = 0; i < (N * N); i++) {
|
|
h_f[i].x = f[i];
|
|
h_f[i].y = 0.0f;
|
|
}
|
|
|
|
// cufftCreate() - Create an empty plan
|
|
cufftResult result;
|
|
cufftHandle planComplex;
|
|
result = cufftCreate(&planComplex);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("cufftCreate failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// cufftXtSetGPUs() - Define which GPUs to use
|
|
result = cufftXtSetGPUs(planComplex, nGPUs, whichGPUs);
|
|
|
|
if (result == CUFFT_INVALID_DEVICE) {
|
|
printf("This sample requires two GPUs on the same board.\n");
|
|
printf("No such board was found. Waiving sample.\n");
|
|
exit(EXIT_WAIVED);
|
|
} else if (result != CUFFT_SUCCESS) {
|
|
printf("cufftXtSetGPUs failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Print the device information to run the code
|
|
printf("\nRunning on GPUs\n");
|
|
for (int i = 0; i < 2; i++) {
|
|
cudaDeviceProp deviceProp;
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, whichGPUs[i]));
|
|
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n",
|
|
whichGPUs[i], deviceProp.name, deviceProp.major, deviceProp.minor);
|
|
}
|
|
|
|
size_t *worksize;
|
|
worksize = (size_t *)malloc(sizeof(size_t) * nGPUs);
|
|
|
|
// cufftMakePlan2d() - Create the plan
|
|
result = cufftMakePlan2d(planComplex, N, N, CUFFT_C2C, worksize);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*MakePlan* failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
cudaSetDevice(whichGPUs[i]);
|
|
cudaMalloc((void **)&d_k[i], sizeof(float) * N);
|
|
cudaMemcpy(d_k[i], k, sizeof(float) * N, cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
// Create a variable on device
|
|
// d_f - variable on device to store the input data
|
|
// d_d_f - variable that store the natural order of d_f data
|
|
// d_out - device output
|
|
cudaLibXtDesc *d_f, *d_d_f, *d_out;
|
|
|
|
// cufftXtMalloc() - Malloc data on multiple GPUs
|
|
|
|
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_f,
|
|
CUFFT_XT_FORMAT_INPLACE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMalloc failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_d_f,
|
|
CUFFT_XT_FORMAT_INPLACE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMalloc failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_out,
|
|
CUFFT_XT_FORMAT_INPLACE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMalloc failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// cufftXtMemcpy() - Copy the data from host to device
|
|
result = cufftXtMemcpy(planComplex, d_f, h_f, CUFFT_COPY_HOST_TO_DEVICE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMemcpy failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// cufftXtExecDescriptorC2C() - Execute FFT on data on multiple GPUs
|
|
printf("Forward 2d FFT on multiple GPUs\n");
|
|
result = cufftXtExecDescriptorC2C(planComplex, d_f, d_f, CUFFT_FORWARD);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtExecC2C failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// cufftXtMemcpy() - Copy the data to natural order on GPUs
|
|
result = cufftXtMemcpy(planComplex, d_d_f, d_f, CUFFT_COPY_DEVICE_TO_DEVICE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMemcpy failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("Solve Poisson Equation\n");
|
|
solvePoissonEquation(d_d_f, d_out, d_k, N, nGPUs);
|
|
|
|
printf("Inverse 2d FFT on multiple GPUs\n");
|
|
// cufftXtExecDescriptorC2C() - Execute inverse FFT on data on multiple GPUs
|
|
result = cufftXtExecDescriptorC2C(planComplex, d_out, d_out, CUFFT_INVERSE);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtExecC2C failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Create a variable on host to copy the data from device
|
|
// h_d_out - variable store the output of device
|
|
Complex *h_d_out = (Complex *)malloc(sizeof(Complex) * N * N);
|
|
|
|
// cufftXtMemcpy() - Copy data from multiple GPUs to host
|
|
result =
|
|
cufftXtMemcpy(planComplex, h_d_out, d_out, CUFFT_COPY_DEVICE_TO_HOST);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtMemcpy failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
float *out = (float *)malloc(sizeof(float) * N * N);
|
|
float constant = h_d_out[0].x / N * N;
|
|
for (int i = 0; i < N * N; i++) {
|
|
// subtract u[0] to force the arbitrary constant to be 0
|
|
out[i] = (h_d_out[i].x / (N * N)) - constant;
|
|
}
|
|
|
|
// cleanup memory
|
|
|
|
free(h_f);
|
|
free(k);
|
|
free(out);
|
|
free(h_d_out);
|
|
free(x);
|
|
free(whichGPUs);
|
|
free(y);
|
|
free(f);
|
|
free(u_a);
|
|
free(worksize);
|
|
|
|
// cudaXtFree() - Free GPU memory
|
|
for (int i = 0; i < GPU_COUNT; i++) {
|
|
cudaFree(d_k[i]);
|
|
}
|
|
result = cufftXtFree(d_out);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtFree failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
result = cufftXtFree(d_f);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtFree failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
result = cufftXtFree(d_d_f);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("*XtFree failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// cufftDestroy() - Destroy FFT plan
|
|
result = cufftDestroy(planComplex);
|
|
if (result != CUFFT_SUCCESS) {
|
|
printf("cufftDestroy failed: code %d\n", (int)result);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Launch kernel on multiple GPU
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
void solvePoissonEquation(cudaLibXtDesc *d_ft, cudaLibXtDesc *d_ft_k, float **k,
|
|
int N, int nGPUs) {
|
|
int device;
|
|
dim3 dimGrid(int(N / BSZ_X), int((N / 2) / BSZ_Y));
|
|
dim3 dimBlock(BSZ_X, BSZ_Y);
|
|
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
device = d_ft_k->descriptor->GPUs[i];
|
|
cudaSetDevice(device);
|
|
solvePoisson<<<dimGrid, dimBlock>>>(
|
|
(cufftComplex *)d_ft->descriptor->data[i],
|
|
(cufftComplex *)d_ft_k->descriptor->data[i], k[i], N, i, nGPUs);
|
|
}
|
|
|
|
// Wait for device to finish all operation
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
device = d_ft_k->descriptor->GPUs[i];
|
|
cudaSetDevice(device);
|
|
cudaDeviceSynchronize();
|
|
|
|
// Check if kernel execution generated and error
|
|
getLastCudaError("Kernel execution failed [ solvePoisson ]");
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Kernel for Solving Poisson equation on GPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__global__ void solvePoisson(cufftComplex *ft, cufftComplex *ft_k, float *k,
|
|
int N, int gpu_id, int n_gpu) {
|
|
int i = threadIdx.x + blockIdx.x * blockDim.x;
|
|
int j = threadIdx.y + blockIdx.y * blockDim.y;
|
|
int index = j * N + i;
|
|
if (i < N && j < N / n_gpu) {
|
|
float k2 =
|
|
k[i] * k[i] + k[j + gpu_id * N / n_gpu] * k[j + gpu_id * N / n_gpu];
|
|
if (i == 0 && j == 0 && gpu_id == 0) {
|
|
k2 = 1.0f;
|
|
}
|
|
|
|
ft_k[index].x = -ft[index].x * 1 / k2;
|
|
ft_k[index].y = -ft[index].y * 1 / k2;
|
|
}
|
|
}
|