mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 12:39:17 +08:00
186 lines
5.8 KiB
Plaintext
186 lines
5.8 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef FWT_KERNEL_CUH
|
|
#define FWT_KERNEL_CUH
|
|
#ifndef fwt_kernel_cuh
|
|
#define fwt_kernel_cuh
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Elementary(for vectors less than elementary size) in-shared memory
|
|
// combined radix-2 + radix-4 Fast Walsh Transform
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#define ELEMENTARY_LOG2SIZE 11
|
|
|
|
__global__ void fwtBatch1Kernel(float *d_Output, float *d_Input, int log2N) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
const int N = 1 << log2N;
|
|
const int base = blockIdx.x << log2N;
|
|
|
|
//(2 ** 11) * 4 bytes == 8KB -- maximum s_data[] size for G80
|
|
extern __shared__ float s_data[];
|
|
float *d_Src = d_Input + base;
|
|
float *d_Dst = d_Output + base;
|
|
|
|
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
|
|
s_data[pos] = d_Src[pos];
|
|
}
|
|
|
|
// Main radix-4 stages
|
|
const int pos = threadIdx.x;
|
|
|
|
for (int stride = N >> 2; stride > 0; stride >>= 2) {
|
|
int lo = pos & (stride - 1);
|
|
int i0 = ((pos - lo) << 2) + lo;
|
|
int i1 = i0 + stride;
|
|
int i2 = i1 + stride;
|
|
int i3 = i2 + stride;
|
|
|
|
cg::sync(cta);
|
|
float D0 = s_data[i0];
|
|
float D1 = s_data[i1];
|
|
float D2 = s_data[i2];
|
|
float D3 = s_data[i3];
|
|
|
|
float T;
|
|
T = D0;
|
|
D0 = D0 + D2;
|
|
D2 = T - D2;
|
|
T = D1;
|
|
D1 = D1 + D3;
|
|
D3 = T - D3;
|
|
T = D0;
|
|
s_data[i0] = D0 + D1;
|
|
s_data[i1] = T - D1;
|
|
T = D2;
|
|
s_data[i2] = D2 + D3;
|
|
s_data[i3] = T - D3;
|
|
}
|
|
|
|
// Do single radix-2 stage for odd power of two
|
|
if (log2N & 1) {
|
|
cg::sync(cta);
|
|
|
|
for (int pos = threadIdx.x; pos < N / 2; pos += blockDim.x) {
|
|
int i0 = pos << 1;
|
|
int i1 = i0 + 1;
|
|
|
|
float D0 = s_data[i0];
|
|
float D1 = s_data[i1];
|
|
s_data[i0] = D0 + D1;
|
|
s_data[i1] = D0 - D1;
|
|
}
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
|
|
d_Dst[pos] = s_data[pos];
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Single in-global memory radix-4 Fast Walsh Transform pass
|
|
// (for strides exceeding elementary vector size)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__global__ void fwtBatch2Kernel(float *d_Output, float *d_Input, int stride) {
|
|
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const int N = blockDim.x * gridDim.x * 4;
|
|
|
|
float *d_Src = d_Input + blockIdx.y * N;
|
|
float *d_Dst = d_Output + blockIdx.y * N;
|
|
|
|
int lo = pos & (stride - 1);
|
|
int i0 = ((pos - lo) << 2) + lo;
|
|
int i1 = i0 + stride;
|
|
int i2 = i1 + stride;
|
|
int i3 = i2 + stride;
|
|
|
|
float D0 = d_Src[i0];
|
|
float D1 = d_Src[i1];
|
|
float D2 = d_Src[i2];
|
|
float D3 = d_Src[i3];
|
|
|
|
float T;
|
|
T = D0;
|
|
D0 = D0 + D2;
|
|
D2 = T - D2;
|
|
T = D1;
|
|
D1 = D1 + D3;
|
|
D3 = T - D3;
|
|
T = D0;
|
|
d_Dst[i0] = D0 + D1;
|
|
d_Dst[i1] = T - D1;
|
|
T = D2;
|
|
d_Dst[i2] = D2 + D3;
|
|
d_Dst[i3] = T - D3;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Put everything together: batched Fast Walsh Transform CPU front-end
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void fwtBatchGPU(float *d_Data, int M, int log2N) {
|
|
const int THREAD_N = 256;
|
|
|
|
int N = 1 << log2N;
|
|
dim3 grid((1 << log2N) / (4 * THREAD_N), M, 1);
|
|
|
|
for (; log2N > ELEMENTARY_LOG2SIZE; log2N -= 2, N >>= 2, M <<= 2) {
|
|
fwtBatch2Kernel<<<grid, THREAD_N>>>(d_Data, d_Data, N / 4);
|
|
getLastCudaError("fwtBatch2Kernel() execution failed\n");
|
|
}
|
|
|
|
fwtBatch1Kernel<<<M, N / 4, N * sizeof(float)>>>(d_Data, d_Data, log2N);
|
|
getLastCudaError("fwtBatch1Kernel() execution failed\n");
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Modulate two arrays
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__global__ void modulateKernel(float *d_A, float *d_B, int N) {
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int numThreads = blockDim.x * gridDim.x;
|
|
float rcpN = 1.0f / (float)N;
|
|
|
|
for (int pos = tid; pos < N; pos += numThreads) {
|
|
d_A[pos] *= d_B[pos] * rcpN;
|
|
}
|
|
}
|
|
|
|
// Interface to modulateKernel()
|
|
void modulateGPU(float *d_A, float *d_B, int N) {
|
|
modulateKernel<<<128, 256>>>(d_A, d_B, N);
|
|
}
|
|
|
|
#endif
|
|
#endif
|