mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 11:19:17 +08:00
287 lines
10 KiB
Plaintext
287 lines
10 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */
|
|
|
|
// includes, system
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// includes, project
|
|
#include <cuda_runtime.h>
|
|
#include <cufft.h>
|
|
#include <cufftXt.h>
|
|
#include <helper_cuda.h>
|
|
#include <helper_functions.h>
|
|
|
|
// Complex data type
|
|
typedef float2 Complex;
|
|
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
|
|
static __device__ __host__ inline Complex ComplexScale(Complex, float);
|
|
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
|
|
static __global__ void ComplexPointwiseMulAndScale(Complex *, const Complex *,
|
|
int, float);
|
|
|
|
// Filtering functions
|
|
void Convolve(const Complex *, int, const Complex *, int, Complex *);
|
|
|
|
// Padding functions
|
|
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// declaration, forward
|
|
void runTest(int argc, char **argv);
|
|
|
|
// The filter size is assumed to be a number smaller than the signal size
|
|
#define SIGNAL_SIZE 50
|
|
#define FILTER_KERNEL_SIZE 11
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) { runTest(argc, argv); }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Run a simple test for CUDA
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void runTest(int argc, char **argv) {
|
|
printf("[simpleCUFFT] is starting...\n");
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
// Allocate host memory for the signal
|
|
Complex *h_signal =
|
|
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
|
|
|
|
// Initialize the memory for the signal
|
|
for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) {
|
|
h_signal[i].x = rand() / static_cast<float>(RAND_MAX);
|
|
h_signal[i].y = 0;
|
|
}
|
|
|
|
// Allocate host memory for the filter
|
|
Complex *h_filter_kernel =
|
|
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * FILTER_KERNEL_SIZE));
|
|
|
|
// Initialize the memory for the filter
|
|
for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
|
|
h_filter_kernel[i].x = rand() / static_cast<float>(RAND_MAX);
|
|
h_filter_kernel[i].y = 0;
|
|
}
|
|
|
|
// Pad signal and filter kernel
|
|
Complex *h_padded_signal;
|
|
Complex *h_padded_filter_kernel;
|
|
int new_size =
|
|
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
|
|
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
|
|
int mem_size = sizeof(Complex) * new_size;
|
|
|
|
// Allocate device memory for signal
|
|
Complex *d_signal;
|
|
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_signal), mem_size));
|
|
// Copy host memory to device
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));
|
|
|
|
// Allocate device memory for filter kernel
|
|
Complex *d_filter_kernel;
|
|
checkCudaErrors(
|
|
cudaMalloc(reinterpret_cast<void **>(&d_filter_kernel), mem_size));
|
|
|
|
// Copy host memory to device
|
|
checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
// CUFFT plan simple API
|
|
cufftHandle plan;
|
|
checkCudaErrors(cufftPlan1d(&plan, new_size, CUFFT_C2C, 1));
|
|
|
|
// CUFFT plan advanced API
|
|
cufftHandle plan_adv;
|
|
size_t workSize;
|
|
long long int new_size_long = new_size;
|
|
|
|
checkCudaErrors(cufftCreate(&plan_adv));
|
|
checkCudaErrors(cufftXtMakePlanMany(plan_adv, 1, &new_size_long, NULL, 1, 1,
|
|
CUDA_C_32F, NULL, 1, 1, CUDA_C_32F, 1,
|
|
&workSize, CUDA_C_32F));
|
|
printf("Temporary buffer size %li bytes\n", workSize);
|
|
|
|
// Transform signal and kernel
|
|
printf("Transforming signal cufftExecC2C\n");
|
|
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
|
|
reinterpret_cast<cufftComplex *>(d_signal),
|
|
CUFFT_FORWARD));
|
|
checkCudaErrors(cufftExecC2C(
|
|
plan_adv, reinterpret_cast<cufftComplex *>(d_filter_kernel),
|
|
reinterpret_cast<cufftComplex *>(d_filter_kernel), CUFFT_FORWARD));
|
|
|
|
// Multiply the coefficients together and normalize the result
|
|
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
|
|
ComplexPointwiseMulAndScale<<<32, 256>>>(d_signal, d_filter_kernel, new_size,
|
|
1.0f / new_size);
|
|
|
|
// Check if kernel execution generated and error
|
|
getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]");
|
|
|
|
// Transform signal back
|
|
printf("Transforming signal back cufftExecC2C\n");
|
|
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
|
|
reinterpret_cast<cufftComplex *>(d_signal),
|
|
CUFFT_INVERSE));
|
|
|
|
// Copy device memory to host
|
|
Complex *h_convolved_signal = h_padded_signal;
|
|
checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
// Allocate host memory for the convolution result
|
|
Complex *h_convolved_signal_ref =
|
|
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
|
|
|
|
// Convolve on the host
|
|
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
|
|
h_convolved_signal_ref);
|
|
|
|
// check result
|
|
bool bTestResult = sdkCompareL2fe(
|
|
reinterpret_cast<float *>(h_convolved_signal_ref),
|
|
reinterpret_cast<float *>(h_convolved_signal), 2 * SIGNAL_SIZE, 1e-5f);
|
|
|
|
// Destroy CUFFT context
|
|
checkCudaErrors(cufftDestroy(plan));
|
|
checkCudaErrors(cufftDestroy(plan_adv));
|
|
|
|
// cleanup memory
|
|
free(h_signal);
|
|
free(h_filter_kernel);
|
|
free(h_padded_signal);
|
|
free(h_padded_filter_kernel);
|
|
free(h_convolved_signal_ref);
|
|
checkCudaErrors(cudaFree(d_signal));
|
|
checkCudaErrors(cudaFree(d_filter_kernel));
|
|
|
|
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
// Pad data
|
|
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
|
|
const Complex *filter_kernel, Complex **padded_filter_kernel,
|
|
int filter_kernel_size) {
|
|
int minRadius = filter_kernel_size / 2;
|
|
int maxRadius = filter_kernel_size - minRadius;
|
|
int new_size = signal_size + maxRadius;
|
|
|
|
// Pad signal
|
|
Complex *new_data =
|
|
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
|
|
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
|
|
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
|
|
*padded_signal = new_data;
|
|
|
|
// Pad filter
|
|
new_data = reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
|
|
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
|
|
memset(new_data + maxRadius, 0,
|
|
(new_size - filter_kernel_size) * sizeof(Complex));
|
|
memcpy(new_data + new_size - minRadius, filter_kernel,
|
|
minRadius * sizeof(Complex));
|
|
*padded_filter_kernel = new_data;
|
|
|
|
return new_size;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Filtering operations
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Computes convolution on the host
|
|
void Convolve(const Complex *signal, int signal_size,
|
|
const Complex *filter_kernel, int filter_kernel_size,
|
|
Complex *filtered_signal) {
|
|
int minRadius = filter_kernel_size / 2;
|
|
int maxRadius = filter_kernel_size - minRadius;
|
|
|
|
// Loop over output element indices
|
|
for (int i = 0; i < signal_size; ++i) {
|
|
filtered_signal[i].x = filtered_signal[i].y = 0;
|
|
|
|
// Loop over convolution indices
|
|
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
|
|
int k = i + j;
|
|
|
|
if (k >= 0 && k < signal_size) {
|
|
filtered_signal[i] =
|
|
ComplexAdd(filtered_signal[i],
|
|
ComplexMul(signal[k], filter_kernel[minRadius - j]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Complex operations
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Complex addition
|
|
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
|
|
Complex c;
|
|
c.x = a.x + b.x;
|
|
c.y = a.y + b.y;
|
|
return c;
|
|
}
|
|
|
|
// Complex scale
|
|
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
|
|
Complex c;
|
|
c.x = s * a.x;
|
|
c.y = s * a.y;
|
|
return c;
|
|
}
|
|
|
|
// Complex multiplication
|
|
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
|
|
Complex c;
|
|
c.x = a.x * b.x - a.y * b.y;
|
|
c.y = a.x * b.y + a.y * b.x;
|
|
return c;
|
|
}
|
|
|
|
// Complex pointwise multiplication
|
|
static __global__ void ComplexPointwiseMulAndScale(Complex *a, const Complex *b,
|
|
int size, float scale) {
|
|
const int numThreads = blockDim.x * gridDim.x;
|
|
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (int i = threadID; i < size; i += numThreads) {
|
|
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
|
|
}
|
|
}
|