mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
160 lines
5.8 KiB
Plaintext
160 lines
5.8 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Multi-GPU sample using OpenMP for threading on the CPU side
|
|
* needs a compiler that supports OpenMP 2.0
|
|
*/
|
|
|
|
#include <helper_cuda.h>
|
|
#include <omp.h>
|
|
#include <stdio.h> // stdio functions are used since C++ streams aren't necessarily thread safe
|
|
|
|
using namespace std;
|
|
|
|
// a simple kernel that simply increments each array element by b
|
|
__global__ void kernelAddConstant(int *g_a, const int b) {
|
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
g_a[idx] += b;
|
|
}
|
|
|
|
// a predicate that checks whether each array element is set to its index plus b
|
|
int correctResult(int *data, const int n, const int b) {
|
|
for (int i = 0; i < n; i++)
|
|
if (data[i] != i + b) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
int num_gpus = 0; // number of CUDA GPUs
|
|
|
|
printf("%s Starting...\n\n", argv[0]);
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// determine the number of CUDA capable GPUs
|
|
//
|
|
cudaGetDeviceCount(&num_gpus);
|
|
|
|
if (num_gpus < 1) {
|
|
printf("no CUDA capable devices were detected\n");
|
|
return 1;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// display CPU and GPU configuration
|
|
//
|
|
printf("number of host CPUs:\t%d\n", omp_get_num_procs());
|
|
printf("number of CUDA devices:\t%d\n", num_gpus);
|
|
|
|
for (int i = 0; i < num_gpus; i++) {
|
|
cudaDeviceProp dprop;
|
|
cudaGetDeviceProperties(&dprop, i);
|
|
printf(" %d: %s\n", i, dprop.name);
|
|
}
|
|
|
|
printf("---------------------------\n");
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// initialize data
|
|
//
|
|
unsigned int n = num_gpus * 8192;
|
|
unsigned int nbytes = n * sizeof(int);
|
|
int *a = 0; // pointer to data on the CPU
|
|
int b = 3; // value by which the array is incremented
|
|
a = (int *)malloc(nbytes);
|
|
|
|
if (0 == a) {
|
|
printf("couldn't allocate CPU memory\n");
|
|
return 1;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < n; i++) a[i] = i;
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// run as many CPU threads as there are CUDA devices
|
|
// each CPU thread controls a different device, processing its
|
|
// portion of the data. It's possible to use more CPU threads
|
|
// than there are CUDA devices, in which case several CPU
|
|
// threads will be allocating resources and launching kernels
|
|
// on the same device. For example, try omp_set_num_threads(2*num_gpus);
|
|
// Recall that all variables declared inside an "omp parallel" scope are
|
|
// local to each CPU thread
|
|
//
|
|
omp_set_num_threads(
|
|
num_gpus); // create as many CPU threads as there are CUDA devices
|
|
// omp_set_num_threads(2*num_gpus);// create twice as many CPU threads as there
|
|
// are CUDA devices
|
|
#pragma omp parallel
|
|
{
|
|
unsigned int cpu_thread_id = omp_get_thread_num();
|
|
unsigned int num_cpu_threads = omp_get_num_threads();
|
|
|
|
// set and check the CUDA device for this CPU thread
|
|
int gpu_id = -1;
|
|
checkCudaErrors(cudaSetDevice(
|
|
cpu_thread_id %
|
|
num_gpus)); // "% num_gpus" allows more CPU threads than GPU devices
|
|
checkCudaErrors(cudaGetDevice(&gpu_id));
|
|
printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id,
|
|
num_cpu_threads, gpu_id);
|
|
|
|
int *d_a =
|
|
0; // pointer to memory on the device associated with this CPU thread
|
|
int *sub_a =
|
|
a +
|
|
cpu_thread_id * n /
|
|
num_cpu_threads; // pointer to this CPU thread's portion of data
|
|
unsigned int nbytes_per_kernel = nbytes / num_cpu_threads;
|
|
dim3 gpu_threads(128); // 128 threads per block
|
|
dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes_per_kernel));
|
|
checkCudaErrors(cudaMemset(d_a, 0, nbytes_per_kernel));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice));
|
|
kernelAddConstant<<<gpu_blocks, gpu_threads>>>(d_a, b);
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(cudaFree(d_a));
|
|
}
|
|
printf("---------------------------\n");
|
|
|
|
if (cudaSuccess != cudaGetLastError())
|
|
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// check the result
|
|
//
|
|
bool bResult = correctResult(a, n, b);
|
|
|
|
if (a) free(a); // free CPU memory
|
|
|
|
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|