mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 09:29:18 +08:00
184 lines
6.4 KiB
C++
184 lines
6.4 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// CUDA Runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
// Utilities and system includes
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
#include "quasirandomGenerator_common.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// CPU code
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void initQuasirandomGenerator(
|
|
unsigned int table[QRNG_DIMENSIONS][QRNG_RESOLUTION]);
|
|
|
|
extern "C" float getQuasirandomValue(
|
|
unsigned int table[QRNG_DIMENSIONS][QRNG_RESOLUTION], int i, int dim);
|
|
|
|
extern "C" double getQuasirandomValue63(INT64 i, int dim);
|
|
extern "C" double MoroInvCNDcpu(unsigned int p);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPU code
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void initTableGPU(
|
|
unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]);
|
|
extern "C" void quasirandomGeneratorGPU(float *d_Output, unsigned int seed,
|
|
unsigned int N);
|
|
extern "C" void inverseCNDgpu(float *d_Output, unsigned int *d_Input,
|
|
unsigned int N);
|
|
|
|
const int N = 1048576;
|
|
|
|
int main(int argc, char **argv) {
|
|
// Start logs
|
|
printf("%s Starting...\n\n", argv[0]);
|
|
|
|
unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION];
|
|
|
|
float *h_OutputGPU, *d_Output;
|
|
|
|
int dim, pos;
|
|
double delta, ref, sumDelta, sumRef, L1norm, gpuTime;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
|
|
if (sizeof(INT64) != 8) {
|
|
printf("sizeof(INT64) != 8\n");
|
|
return 0;
|
|
}
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Allocating GPU memory...\n");
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_Output, QRNG_DIMENSIONS * N * sizeof(float)));
|
|
|
|
printf("Allocating CPU memory...\n");
|
|
h_OutputGPU = (float *)malloc(QRNG_DIMENSIONS * N * sizeof(float));
|
|
|
|
printf("Initializing QRNG tables...\n\n");
|
|
initQuasirandomGenerator(tableCPU);
|
|
|
|
initTableGPU(tableCPU);
|
|
|
|
printf("Testing QRNG...\n\n");
|
|
checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float)));
|
|
int numIterations = 20;
|
|
|
|
for (int i = -1; i < numIterations; i++) {
|
|
if (i == 0) {
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
}
|
|
|
|
quasirandomGeneratorGPU(d_Output, 0, N);
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer) / (double)numIterations * 1e-3;
|
|
printf(
|
|
"quasirandomGenerator, Throughput = %.4f GNumbers/s, Time = %.5f s, Size "
|
|
"= %u Numbers, NumDevsUsed = %u, Workgroup = %u\n",
|
|
(double)QRNG_DIMENSIONS * (double)N * 1.0E-9 / gpuTime, gpuTime,
|
|
QRNG_DIMENSIONS * N, 1, 128 * QRNG_DIMENSIONS);
|
|
|
|
printf("\nReading GPU results...\n");
|
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output,
|
|
QRNG_DIMENSIONS * N * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
printf("Comparing to the CPU results...\n\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (dim = 0; dim < QRNG_DIMENSIONS; dim++)
|
|
for (pos = 0; pos < N; pos++) {
|
|
ref = getQuasirandomValue63(pos, dim);
|
|
delta = (double)h_OutputGPU[dim * N + pos] - ref;
|
|
sumDelta += fabs(delta);
|
|
sumRef += fabs(ref);
|
|
}
|
|
|
|
printf("L1 norm: %E\n", sumDelta / sumRef);
|
|
|
|
printf("\nTesting inverseCNDgpu()...\n\n");
|
|
checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float)));
|
|
|
|
for (int i = -1; i < numIterations; i++) {
|
|
if (i == 0) {
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
}
|
|
|
|
inverseCNDgpu(d_Output, NULL, QRNG_DIMENSIONS * N);
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer) / (double)numIterations * 1e-3;
|
|
printf(
|
|
"quasirandomGenerator-inverse, Throughput = %.4f GNumbers/s, Time = %.5f "
|
|
"s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n",
|
|
(double)QRNG_DIMENSIONS * (double)N * 1E-9 / gpuTime, gpuTime,
|
|
QRNG_DIMENSIONS * N, 1, 128);
|
|
|
|
printf("Reading GPU results...\n");
|
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output,
|
|
QRNG_DIMENSIONS * N * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
printf("\nComparing to the CPU results...\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
unsigned int distance = ((unsigned int)-1) / (QRNG_DIMENSIONS * N + 1);
|
|
|
|
for (pos = 0; pos < QRNG_DIMENSIONS * N; pos++) {
|
|
unsigned int d = (pos + 1) * distance;
|
|
ref = MoroInvCNDcpu(d);
|
|
delta = (double)h_OutputGPU[pos] - ref;
|
|
sumDelta += fabs(delta);
|
|
sumRef += fabs(ref);
|
|
}
|
|
|
|
printf("L1 norm: %E\n\n", L1norm = sumDelta / sumRef);
|
|
|
|
printf("Shutting down...\n");
|
|
sdkDeleteTimer(&hTimer);
|
|
free(h_OutputGPU);
|
|
checkCudaErrors(cudaFree(d_Output));
|
|
|
|
exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|