cuda-samples/Samples/simpleVulkan/VulkanBaseApp.cpp
2021-06-10 17:30:25 +05:30

1922 lines
70 KiB
C++

/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains basic cross-platform setup paths in working with Vulkan
* and rendering window. It is largely based off of tutorials provided here:
* https://vulkan-tutorial.com/
*/
#include <stdexcept>
#include <iostream>
#include <fstream>
#include <algorithm>
#include <functional>
#include <set>
#include <string.h>
#include "VulkanBaseApp.h"
#define GLFW_INCLUDE_VULKAN
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <GLFW/glfw3.h>
#ifdef _WIN64
#include <VersionHelpers.h>
#include <dxgi1_2.h>
#include <aclapi.h>
#endif /* _WIN64 */
#ifndef countof
#define countof(x) (sizeof(x) / sizeof(*(x)))
#endif
static const char *validationLayers[] = {"VK_LAYER_KHRONOS_validation"};
static const size_t MAX_FRAMES_IN_FLIGHT = 5;
void VulkanBaseApp::resizeCallback(GLFWwindow *window, int width, int height) {
VulkanBaseApp *app =
reinterpret_cast<VulkanBaseApp *>(glfwGetWindowUserPointer(window));
app->m_framebufferResized = true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL
debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData) {
std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;
return VK_FALSE;
}
VulkanBaseApp::VulkanBaseApp(const std::string &appName, bool enableValidation)
: m_appName(appName),
m_enableValidation(enableValidation),
m_instance(VK_NULL_HANDLE),
m_window(nullptr),
m_debugMessenger(VK_NULL_HANDLE),
m_surface(VK_NULL_HANDLE),
m_physicalDevice(VK_NULL_HANDLE),
m_device(VK_NULL_HANDLE),
m_graphicsQueue(VK_NULL_HANDLE),
m_presentQueue(VK_NULL_HANDLE),
m_swapChain(VK_NULL_HANDLE),
m_vkDeviceUUID(),
m_swapChainImages(),
m_swapChainFormat(),
m_swapChainExtent(),
m_swapChainImageViews(),
m_shaderFiles(),
m_renderPass(),
m_pipelineLayout(VK_NULL_HANDLE),
m_graphicsPipeline(VK_NULL_HANDLE),
m_swapChainFramebuffers(),
m_commandPool(VK_NULL_HANDLE),
m_commandBuffers(),
m_imageAvailableSemaphores(),
m_renderFinishedSemaphores(),
m_inFlightFences(),
m_uniformBuffers(),
m_uniformMemory(),
m_descriptorSetLayout(VK_NULL_HANDLE),
m_descriptorPool(VK_NULL_HANDLE),
m_descriptorSets(),
m_depthImage(VK_NULL_HANDLE),
m_depthImageMemory(VK_NULL_HANDLE),
m_depthImageView(VK_NULL_HANDLE),
m_currentFrame(0),
m_framebufferResized(false) {}
VkExternalSemaphoreHandleTypeFlagBits
VulkanBaseApp::getDefaultSemaphoreHandleType() {
#ifdef _WIN64
return IsWindows8OrGreater()
? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT;
#else
return VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
#endif /* _WIN64 */
}
VkExternalMemoryHandleTypeFlagBits VulkanBaseApp::getDefaultMemHandleType() {
#ifdef _WIN64
return IsWindows8Point1OrGreater()
? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT;
#else
return VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
#endif /* _WIN64 */
}
VulkanBaseApp::~VulkanBaseApp() {
cleanupSwapChain();
if (m_descriptorSetLayout != VK_NULL_HANDLE) {
vkDestroyDescriptorSetLayout(m_device, m_descriptorSetLayout, nullptr);
}
#ifdef _VK_TIMELINE_SEMAPHORE
if (m_vkPresentationSemaphore != VK_NULL_HANDLE) {
vkDestroySemaphore(m_device, m_vkPresentationSemaphore, nullptr);
}
#endif /* _VK_TIMELINE_SEMAPHORE */
for (size_t i = 0; i < m_renderFinishedSemaphores.size(); i++) {
vkDestroySemaphore(m_device, m_renderFinishedSemaphores[i], nullptr);
vkDestroySemaphore(m_device, m_imageAvailableSemaphores[i], nullptr);
vkDestroyFence(m_device, m_inFlightFences[i], nullptr);
}
if (m_commandPool != VK_NULL_HANDLE) {
vkDestroyCommandPool(m_device, m_commandPool, nullptr);
}
if (m_device != VK_NULL_HANDLE) {
vkDestroyDevice(m_device, nullptr);
}
if (m_enableValidation) {
PFN_vkDestroyDebugUtilsMessengerEXT func =
(PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
m_instance, "vkDestroyDebugUtilsMessengerEXT");
if (func != nullptr) {
func(m_instance, m_debugMessenger, nullptr);
}
}
if (m_surface != VK_NULL_HANDLE) {
vkDestroySurfaceKHR(m_instance, m_surface, nullptr);
}
if (m_instance != VK_NULL_HANDLE) {
vkDestroyInstance(m_instance, nullptr);
}
if (m_window) {
glfwDestroyWindow(m_window);
}
glfwTerminate();
}
void VulkanBaseApp::init() {
initWindow();
initVulkan();
}
VkCommandBuffer VulkanBaseApp::beginSingleTimeCommands() {
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = m_commandPool;
allocInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(m_device, &allocInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
return commandBuffer;
}
void VulkanBaseApp::endSingleTimeCommands(VkCommandBuffer commandBuffer) {
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkQueueSubmit(m_graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle(m_graphicsQueue);
vkFreeCommandBuffers(m_device, m_commandPool, 1, &commandBuffer);
}
void VulkanBaseApp::initWindow() {
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
m_window = glfwCreateWindow(1280, 800, m_appName.c_str(), nullptr, nullptr);
glfwSetWindowUserPointer(m_window, this);
glfwSetFramebufferSizeCallback(m_window, resizeCallback);
}
std::vector<const char *> VulkanBaseApp::getRequiredExtensions() const {
return std::vector<const char *>();
}
std::vector<const char *> VulkanBaseApp::getRequiredDeviceExtensions() const {
return std::vector<const char *>();
}
void VulkanBaseApp::initVulkan() {
createInstance();
createSurface();
createDevice();
createSwapChain();
createImageViews();
createRenderPass();
createDescriptorSetLayout();
createGraphicsPipeline();
createCommandPool();
createDepthResources();
createFramebuffers();
initVulkanApp();
createUniformBuffers();
createDescriptorPool();
createDescriptorSets();
createCommandBuffers();
createSyncObjects();
}
#ifdef _WIN64
class WindowsSecurityAttributes {
protected:
SECURITY_ATTRIBUTES m_winSecurityAttributes;
PSECURITY_DESCRIPTOR m_winPSecurityDescriptor;
public:
WindowsSecurityAttributes();
SECURITY_ATTRIBUTES *operator&();
~WindowsSecurityAttributes();
};
WindowsSecurityAttributes::WindowsSecurityAttributes() {
m_winPSecurityDescriptor = (PSECURITY_DESCRIPTOR)calloc(
1, SECURITY_DESCRIPTOR_MIN_LENGTH + 2 * sizeof(void **));
if (!m_winPSecurityDescriptor) {
throw std::runtime_error(
"Failed to allocate memory for security descriptor");
}
PSID *ppSID = (PSID *)((PBYTE)m_winPSecurityDescriptor +
SECURITY_DESCRIPTOR_MIN_LENGTH);
PACL *ppACL = (PACL *)((PBYTE)ppSID + sizeof(PSID *));
InitializeSecurityDescriptor(m_winPSecurityDescriptor,
SECURITY_DESCRIPTOR_REVISION);
SID_IDENTIFIER_AUTHORITY sidIdentifierAuthority =
SECURITY_WORLD_SID_AUTHORITY;
AllocateAndInitializeSid(&sidIdentifierAuthority, 1, SECURITY_WORLD_RID, 0, 0,
0, 0, 0, 0, 0, ppSID);
EXPLICIT_ACCESS explicitAccess;
ZeroMemory(&explicitAccess, sizeof(EXPLICIT_ACCESS));
explicitAccess.grfAccessPermissions =
STANDARD_RIGHTS_ALL | SPECIFIC_RIGHTS_ALL;
explicitAccess.grfAccessMode = SET_ACCESS;
explicitAccess.grfInheritance = INHERIT_ONLY;
explicitAccess.Trustee.TrusteeForm = TRUSTEE_IS_SID;
explicitAccess.Trustee.TrusteeType = TRUSTEE_IS_WELL_KNOWN_GROUP;
explicitAccess.Trustee.ptstrName = (LPTSTR)*ppSID;
SetEntriesInAcl(1, &explicitAccess, NULL, ppACL);
SetSecurityDescriptorDacl(m_winPSecurityDescriptor, TRUE, *ppACL, FALSE);
m_winSecurityAttributes.nLength = sizeof(m_winSecurityAttributes);
m_winSecurityAttributes.lpSecurityDescriptor = m_winPSecurityDescriptor;
m_winSecurityAttributes.bInheritHandle = TRUE;
}
SECURITY_ATTRIBUTES *WindowsSecurityAttributes::operator&() {
return &m_winSecurityAttributes;
}
WindowsSecurityAttributes::~WindowsSecurityAttributes() {
PSID *ppSID = (PSID *)((PBYTE)m_winPSecurityDescriptor +
SECURITY_DESCRIPTOR_MIN_LENGTH);
PACL *ppACL = (PACL *)((PBYTE)ppSID + sizeof(PSID *));
if (*ppSID) {
FreeSid(*ppSID);
}
if (*ppACL) {
LocalFree(*ppACL);
}
free(m_winPSecurityDescriptor);
}
#endif /* _WIN64 */
static VkFormat findSupportedFormat(VkPhysicalDevice physicalDevice,
const std::vector<VkFormat> &candidates,
VkImageTiling tiling,
VkFormatFeatureFlags features) {
for (VkFormat format : candidates) {
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);
if (tiling == VK_IMAGE_TILING_LINEAR &&
(props.linearTilingFeatures & features) == features) {
return format;
} else if (tiling == VK_IMAGE_TILING_OPTIMAL &&
(props.optimalTilingFeatures & features) == features) {
return format;
}
}
throw std::runtime_error("Failed to find supported format!");
}
static uint32_t findMemoryType(VkPhysicalDevice physicalDevice,
uint32_t typeFilter,
VkMemoryPropertyFlags properties) {
VkPhysicalDeviceMemoryProperties memProperties;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if (typeFilter & (1 << i) &&
(memProperties.memoryTypes[i].propertyFlags & properties) ==
properties) {
return i;
}
}
return ~0;
}
static bool supportsValidationLayers() {
std::vector<VkLayerProperties> availableLayers;
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
availableLayers.resize(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
for (const char *layerName : validationLayers) {
bool layerFound = false;
for (const auto &layerProperties : availableLayers) {
if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;
}
}
if (!layerFound) {
return false;
}
}
return true;
}
void VulkanBaseApp::createInstance() {
if (m_enableValidation && !supportsValidationLayers()) {
throw std::runtime_error("Validation requested, but not supported!");
}
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = m_appName.c_str();
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_2;
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
std::vector<const char *> exts = getRequiredExtensions();
{
uint32_t glfwExtensionCount = 0;
const char **glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
exts.insert(exts.begin(), glfwExtensions,
glfwExtensions + glfwExtensionCount);
if (m_enableValidation) {
exts.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
}
createInfo.enabledExtensionCount = static_cast<uint32_t>(exts.size());
createInfo.ppEnabledExtensionNames = exts.data();
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo = {};
if (m_enableValidation) {
createInfo.enabledLayerCount =
static_cast<uint32_t>(countof(validationLayers));
createInfo.ppEnabledLayerNames = validationLayers;
debugCreateInfo.sType =
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
debugCreateInfo.messageSeverity =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
debugCreateInfo.messageType =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
debugCreateInfo.pfnUserCallback = debugCallback;
createInfo.pNext = &debugCreateInfo;
} else {
createInfo.enabledLayerCount = 0;
createInfo.pNext = nullptr;
}
if (vkCreateInstance(&createInfo, nullptr, &m_instance) != VK_SUCCESS) {
throw std::runtime_error("Failed to create Vulkan instance!");
}
if (m_enableValidation) {
PFN_vkCreateDebugUtilsMessengerEXT func =
(PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
m_instance, "vkCreateDebugUtilsMessengerEXT");
if (func == nullptr ||
func(m_instance, &debugCreateInfo, nullptr, &m_debugMessenger) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to set up debug messenger!");
}
}
}
void VulkanBaseApp::createSurface() {
if (glfwCreateWindowSurface(m_instance, m_window, nullptr, &m_surface) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create window surface!");
}
}
static bool findGraphicsQueueIndicies(VkPhysicalDevice device,
VkSurfaceKHR surface,
uint32_t &graphicsFamily,
uint32_t &presentFamily) {
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount,
queueFamilies.data());
graphicsFamily = presentFamily = ~0;
for (uint32_t i = 0; i < queueFamilyCount; i++) {
if (queueFamilies[i].queueCount > 0) {
if (graphicsFamily == ~0 &&
queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphicsFamily = i;
}
uint32_t presentSupport = 0;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
if (presentFamily == ~0 && presentSupport) {
presentFamily = i;
}
if (presentFamily != ~0 && graphicsFamily != ~0) {
break;
}
}
}
return graphicsFamily != ~0 && presentFamily != ~0;
}
static bool hasAllExtensions(
VkPhysicalDevice device,
const std::vector<const char *> &deviceExtensions) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(),
deviceExtensions.end());
for (const auto &extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
static void getSwapChainProperties(
VkPhysicalDevice device, VkSurfaceKHR surface,
VkSurfaceCapabilitiesKHR &capabilities,
std::vector<VkSurfaceFormatKHR> &formats,
std::vector<VkPresentModeKHR> &presentModes) {
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
if (formatCount != 0) {
formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount,
formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount,
nullptr);
if (presentModeCount != 0) {
presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(
device, surface, &presentModeCount, presentModes.data());
}
}
bool VulkanBaseApp::isSuitableDevice(VkPhysicalDevice dev) const {
uint32_t graphicsQueueIndex, presentQueueIndex;
std::vector<const char *> deviceExtensions = getRequiredDeviceExtensions();
VkSurfaceCapabilitiesKHR caps;
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
getSwapChainProperties(dev, m_surface, caps, formats, presentModes);
return hasAllExtensions(dev, deviceExtensions) && !formats.empty() &&
!presentModes.empty() &&
findGraphicsQueueIndicies(dev, m_surface, graphicsQueueIndex,
presentQueueIndex);
}
void VulkanBaseApp::createDevice() {
{
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(m_instance, &deviceCount, nullptr);
if (deviceCount == 0) {
throw std::runtime_error("Failed to find Vulkan capable GPUs!");
}
std::vector<VkPhysicalDevice> phyDevs(deviceCount);
vkEnumeratePhysicalDevices(m_instance, &deviceCount, phyDevs.data());
std::vector<VkPhysicalDevice>::iterator it =
std::find_if(phyDevs.begin(), phyDevs.end(),
std::bind(&VulkanBaseApp::isSuitableDevice, this,
std::placeholders::_1));
if (it == phyDevs.end()) {
throw std::runtime_error("No suitable device found!");
}
m_physicalDevice = *it;
}
uint32_t graphicsQueueIndex, presentQueueIndex;
findGraphicsQueueIndicies(m_physicalDevice, m_surface, graphicsQueueIndex,
presentQueueIndex);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueFamilyIndices = {graphicsQueueIndex,
presentQueueIndex};
float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueFamilyIndices) {
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = queueFamily;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateInfo);
}
VkPhysicalDeviceFeatures deviceFeatures = {};
deviceFeatures.fillModeNonSolid = true;
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
#ifdef _VK_TIMELINE_SEMAPHORE
VkPhysicalDeviceVulkan12Features vk12features = {};
vk12features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
vk12features.timelineSemaphore = true;
createInfo.pNext = &vk12features;
#endif
createInfo.pQueueCreateInfos = queueCreateInfos.data();
createInfo.queueCreateInfoCount =
static_cast<uint32_t>(queueCreateInfos.size());
createInfo.pEnabledFeatures = &deviceFeatures;
std::vector<const char *> deviceExtensions = getRequiredDeviceExtensions();
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
createInfo.enabledExtensionCount =
static_cast<uint32_t>(deviceExtensions.size());
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
if (m_enableValidation) {
createInfo.enabledLayerCount =
static_cast<uint32_t>(countof(validationLayers));
createInfo.ppEnabledLayerNames = validationLayers;
} else {
createInfo.enabledLayerCount = 0;
}
if (vkCreateDevice(m_physicalDevice, &createInfo, nullptr, &m_device) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
}
vkGetDeviceQueue(m_device, graphicsQueueIndex, 0, &m_graphicsQueue);
vkGetDeviceQueue(m_device, presentQueueIndex, 0, &m_presentQueue);
VkPhysicalDeviceIDProperties vkPhysicalDeviceIDProperties = {};
vkPhysicalDeviceIDProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
vkPhysicalDeviceIDProperties.pNext = NULL;
VkPhysicalDeviceProperties2 vkPhysicalDeviceProperties2 = {};
vkPhysicalDeviceProperties2.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
vkPhysicalDeviceProperties2.pNext = &vkPhysicalDeviceIDProperties;
PFN_vkGetPhysicalDeviceProperties2 fpGetPhysicalDeviceProperties2;
fpGetPhysicalDeviceProperties2 =
(PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(
m_instance, "vkGetPhysicalDeviceProperties2");
if (fpGetPhysicalDeviceProperties2 == NULL) {
throw std::runtime_error(
"Vulkan: Proc address for \"vkGetPhysicalDeviceProperties2KHR\" not "
"found.\n");
}
fpGetPhysicalDeviceProperties2(m_physicalDevice,
&vkPhysicalDeviceProperties2);
memcpy(m_vkDeviceUUID, vkPhysicalDeviceIDProperties.deviceUUID, VK_UUID_SIZE);
}
static VkSurfaceFormatKHR chooseSwapSurfaceFormat(
const std::vector<VkSurfaceFormatKHR> &availableFormats) {
if (availableFormats.size() == 1 &&
availableFormats[0].format == VK_FORMAT_UNDEFINED) {
return {VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR};
}
for (const auto &availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM &&
availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
return availableFormat;
}
}
return availableFormats[0];
}
static VkPresentModeKHR chooseSwapPresentMode(
const std::vector<VkPresentModeKHR> &availablePresentModes) {
VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;
for (const auto &availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
} else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
bestMode = availablePresentMode;
}
}
return bestMode;
}
static VkExtent2D chooseSwapExtent(
GLFWwindow *window, const VkSurfaceCapabilitiesKHR &capabilities) {
if (capabilities.currentExtent.width !=
std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {
int width, height;
glfwGetFramebufferSize(window, &width, &height);
VkExtent2D actualExtent = {static_cast<uint32_t>(width),
static_cast<uint32_t>(height)};
actualExtent.width = std::max(
capabilities.minImageExtent.width,
std::min(capabilities.maxImageExtent.width, actualExtent.width));
actualExtent.height = std::max(
capabilities.minImageExtent.height,
std::min(capabilities.maxImageExtent.height, actualExtent.height));
return actualExtent;
}
}
void VulkanBaseApp::createSwapChain() {
VkSurfaceCapabilitiesKHR capabilities;
VkSurfaceFormatKHR format;
VkPresentModeKHR presentMode;
VkExtent2D extent;
uint32_t imageCount;
{
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
getSwapChainProperties(m_physicalDevice, m_surface, capabilities, formats,
presentModes);
format = chooseSwapSurfaceFormat(formats);
presentMode = chooseSwapPresentMode(presentModes);
extent = chooseSwapExtent(m_window, capabilities);
imageCount = capabilities.minImageCount + 1;
if (capabilities.maxImageCount > 0 &&
imageCount > capabilities.maxImageCount) {
imageCount = capabilities.maxImageCount;
}
}
VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = m_surface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = format.format;
createInfo.imageColorSpace = format.colorSpace;
createInfo.imageExtent = extent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
uint32_t queueFamilyIndices[2];
findGraphicsQueueIndicies(m_physicalDevice, m_surface, queueFamilyIndices[0],
queueFamilyIndices[1]);
if (queueFamilyIndices[0] != queueFamilyIndices[1]) {
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createInfo.queueFamilyIndexCount = countof(queueFamilyIndices);
createInfo.pQueueFamilyIndices = queueFamilyIndices;
} else {
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
createInfo.preTransform = capabilities.currentTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(m_device, &createInfo, nullptr, &m_swapChain) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create swap chain!");
}
vkGetSwapchainImagesKHR(m_device, m_swapChain, &imageCount, nullptr);
m_swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(m_device, m_swapChain, &imageCount,
m_swapChainImages.data());
m_swapChainFormat = format.format;
m_swapChainExtent = extent;
}
static VkImageView createImageView(VkDevice dev, VkImage image, VkFormat format,
VkImageAspectFlags aspectFlags) {
VkImageView imageView;
VkImageViewCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
createInfo.image = image;
createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
createInfo.format = format;
createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.subresourceRange.aspectMask = aspectFlags;
createInfo.subresourceRange.baseMipLevel = 0;
createInfo.subresourceRange.levelCount = 1;
createInfo.subresourceRange.baseArrayLayer = 0;
createInfo.subresourceRange.layerCount = 1;
if (vkCreateImageView(dev, &createInfo, nullptr, &imageView) != VK_SUCCESS) {
throw std::runtime_error("Failed to create image views!");
}
return imageView;
}
static void createImage(VkPhysicalDevice physicalDevice, VkDevice device,
uint32_t width, uint32_t height, VkFormat format,
VkImageTiling tiling, VkImageUsageFlags usage,
VkMemoryPropertyFlags properties, VkImage &image,
VkDeviceMemory &imageMemory) {
VkImageCreateInfo imageInfo = {};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.format = format;
imageInfo.tiling = tiling;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = usage;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
throw std::runtime_error("failed to create image!");
}
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(device, image, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(
physicalDevice, memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) !=
VK_SUCCESS) {
throw std::runtime_error("failed to allocate image memory!");
}
vkBindImageMemory(device, image, imageMemory, 0);
}
void VulkanBaseApp::createImageViews() {
m_swapChainImageViews.resize(m_swapChainImages.size());
for (uint32_t i = 0; i < m_swapChainImages.size(); i++) {
m_swapChainImageViews[i] =
createImageView(m_device, m_swapChainImages[i], m_swapChainFormat,
VK_IMAGE_ASPECT_COLOR_BIT);
}
}
void VulkanBaseApp::createRenderPass() {
VkAttachmentDescription colorAttachment = {};
colorAttachment.format = m_swapChainFormat;
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference colorAttachmentRef = {};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentDescription depthAttachment = {};
depthAttachment.format = findSupportedFormat(
m_physicalDevice, {VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT,
VK_FORMAT_D24_UNORM_S8_UINT},
VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthAttachment.finalLayout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthAttachmentRef = {};
depthAttachmentRef.attachment = 1;
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
subpass.pDepthStencilAttachment = &depthAttachmentRef;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkAttachmentDescription attachments[] = {colorAttachment, depthAttachment};
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = countof(attachments);
renderPassInfo.pAttachments = attachments;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 1;
renderPassInfo.pDependencies = &dependency;
if (vkCreateRenderPass(m_device, &renderPassInfo, nullptr, &m_renderPass) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create render pass!");
}
}
void VulkanBaseApp::createDescriptorSetLayout() {
VkDescriptorSetLayoutBinding uboLayoutBinding = {};
uboLayoutBinding.binding = 0;
uboLayoutBinding.descriptorCount = 1;
uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uboLayoutBinding.pImmutableSamplers = nullptr;
uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkDescriptorSetLayoutCreateInfo layoutInfo = {};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = 1;
layoutInfo.pBindings = &uboLayoutBinding;
if (vkCreateDescriptorSetLayout(m_device, &layoutInfo, nullptr,
&m_descriptorSetLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create descriptor set layout!");
}
}
VkShaderModule createShaderModule(VkDevice device, const char *filename) {
std::vector<char> shaderContents;
std::ifstream shaderFile(filename, std::ios_base::in | std::ios_base::binary);
VkShaderModuleCreateInfo createInfo = {};
VkShaderModule shaderModule;
if (!shaderFile.good()) {
throw std::runtime_error("Failed to load shader contents");
}
readFile(shaderFile, shaderContents);
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = shaderContents.size();
createInfo.pCode = reinterpret_cast<const uint32_t *>(shaderContents.data());
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to create shader module!");
}
return shaderModule;
}
void VulkanBaseApp::getVertexDescriptions(
std::vector<VkVertexInputBindingDescription> &bindingDesc,
std::vector<VkVertexInputAttributeDescription> &attribDesc) {}
void VulkanBaseApp::getAssemblyStateInfo(
VkPipelineInputAssemblyStateCreateInfo &info) {}
void VulkanBaseApp::createGraphicsPipeline() {
std::vector<VkPipelineShaderStageCreateInfo> shaderStageInfos(
m_shaderFiles.size());
for (size_t i = 0; i < m_shaderFiles.size(); i++) {
shaderStageInfos[i] = {};
shaderStageInfos[i].sType =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageInfos[i].stage = m_shaderFiles[i].first;
shaderStageInfos[i].module =
createShaderModule(m_device, m_shaderFiles[i].second.c_str());
shaderStageInfos[i].pName = "main";
}
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
std::vector<VkVertexInputBindingDescription> vertexBindingDescriptions;
std::vector<VkVertexInputAttributeDescription> vertexAttributeDescriptions;
getVertexDescriptions(vertexBindingDescriptions, vertexAttributeDescriptions);
vertexInputInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexBindingDescriptionCount =
static_cast<uint32_t>(vertexBindingDescriptions.size());
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescriptions.data();
vertexInputInfo.vertexAttributeDescriptionCount =
static_cast<uint32_t>(vertexAttributeDescriptions.size());
vertexInputInfo.pVertexAttributeDescriptions =
vertexAttributeDescriptions.data();
VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
getAssemblyStateInfo(inputAssembly);
VkViewport viewport = {};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = (float)m_swapChainExtent.width;
viewport.height = (float)m_swapChainExtent.height;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor = {};
scissor.offset = {0, 0};
scissor.extent = m_swapChainExtent;
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.pViewports = &viewport;
viewportState.scissorCount = 1;
viewportState.pScissors = &scissor;
VkPipelineRasterizationStateCreateInfo rasterizer = {};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;
rasterizer.rasterizerDiscardEnable = VK_FALSE;
rasterizer.polygonMode = VK_POLYGON_MODE_LINE;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = VK_CULL_MODE_NONE;
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
rasterizer.depthBiasEnable = VK_FALSE;
VkPipelineMultisampleStateCreateInfo multisampling = {};
multisampling.sType =
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampling.minSampleShading = 1.0f; // Optional
multisampling.pSampleMask = nullptr; // Optional
multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
multisampling.alphaToOneEnable = VK_FALSE; // Optional
VkPipelineDepthStencilStateCreateInfo depthStencil = {};
depthStencil.sType =
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_TRUE;
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil.stencilTestEnable = VK_FALSE;
VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
colorBlendAttachment.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
colorBlendAttachment.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlending = {};
colorBlending.sType =
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.logicOpEnable = VK_FALSE;
colorBlending.logicOp = VK_LOGIC_OP_COPY;
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = &colorBlendAttachment;
colorBlending.blendConstants[0] = 0.0f;
colorBlending.blendConstants[1] = 0.0f;
colorBlending.blendConstants[2] = 0.0f;
colorBlending.blendConstants[3] = 0.0f;
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1; // Optional
pipelineLayoutInfo.pSetLayouts = &m_descriptorSetLayout; // Optional
pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional
if (vkCreatePipelineLayout(m_device, &pipelineLayoutInfo, nullptr,
&m_pipelineLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create pipeline layout!");
}
VkGraphicsPipelineCreateInfo pipelineInfo = {};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = static_cast<uint32_t>(shaderStageInfos.size());
pipelineInfo.pStages = shaderStageInfos.data();
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pDepthStencilState = &depthStencil; // Optional
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = nullptr; // Optional
pipelineInfo.layout = m_pipelineLayout;
pipelineInfo.renderPass = m_renderPass;
pipelineInfo.subpass = 0;
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
pipelineInfo.basePipelineIndex = -1; // Optional
if (vkCreateGraphicsPipelines(m_device, VK_NULL_HANDLE, 1, &pipelineInfo,
nullptr, &m_graphicsPipeline) != VK_SUCCESS) {
throw std::runtime_error("failed to create graphics pipeline!");
}
for (size_t i = 0; i < shaderStageInfos.size(); i++) {
vkDestroyShaderModule(m_device, shaderStageInfos[i].module, nullptr);
}
}
void VulkanBaseApp::createFramebuffers() {
m_swapChainFramebuffers.resize(m_swapChainImageViews.size());
for (size_t i = 0; i < m_swapChainImageViews.size(); i++) {
VkImageView attachments[] = {m_swapChainImageViews[i], m_depthImageView};
VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = m_renderPass;
framebufferInfo.attachmentCount = countof(attachments);
framebufferInfo.pAttachments = attachments;
framebufferInfo.width = m_swapChainExtent.width;
framebufferInfo.height = m_swapChainExtent.height;
framebufferInfo.layers = 1;
if (vkCreateFramebuffer(m_device, &framebufferInfo, nullptr,
&m_swapChainFramebuffers[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to create framebuffer!");
}
}
}
void VulkanBaseApp::createCommandPool() {
VkCommandPoolCreateInfo poolInfo = {};
uint32_t graphicsIndex, presentIndex;
findGraphicsQueueIndicies(m_physicalDevice, m_surface, graphicsIndex,
presentIndex);
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.queueFamilyIndex = graphicsIndex;
poolInfo.flags = 0; // Optional
if (vkCreateCommandPool(m_device, &poolInfo, nullptr, &m_commandPool) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to create command pool!");
}
}
static void transitionImageLayout(VulkanBaseApp *app, VkImage image,
VkFormat format, VkImageLayout oldLayout,
VkImageLayout newLayout) {
VkCommandBuffer commandBuffer = app->beginSingleTimeCommands();
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = oldLayout;
barrier.newLayout = newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
format == VK_FORMAT_D24_UNORM_S8_UINT) {
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
} else {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
VkPipelineStageFlags sourceStage;
VkPipelineStageFlags destinationStage;
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
} else {
throw std::invalid_argument("unsupported layout transition!");
}
vkCmdPipelineBarrier(commandBuffer, sourceStage, destinationStage, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
app->endSingleTimeCommands(commandBuffer);
}
void VulkanBaseApp::createDepthResources() {
VkFormat depthFormat = findSupportedFormat(
m_physicalDevice, {VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT,
VK_FORMAT_D24_UNORM_S8_UINT},
VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
createImage(m_physicalDevice, m_device, m_swapChainExtent.width,
m_swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, m_depthImage,
m_depthImageMemory);
m_depthImageView = createImageView(m_device, m_depthImage, depthFormat,
VK_IMAGE_ASPECT_DEPTH_BIT);
transitionImageLayout(this, m_depthImage, depthFormat,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
void VulkanBaseApp::createUniformBuffers() {
VkDeviceSize size = getUniformSize();
if (size > 0) {
m_uniformBuffers.resize(m_swapChainImages.size());
m_uniformMemory.resize(m_swapChainImages.size());
for (size_t i = 0; i < m_uniformBuffers.size(); i++) {
createBuffer(getUniformSize(), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
m_uniformBuffers[i], m_uniformMemory[i]);
}
}
}
void VulkanBaseApp::createDescriptorPool() {
VkDescriptorPoolSize poolSize = {};
poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSize.descriptorCount = static_cast<uint32_t>(m_swapChainImages.size());
VkDescriptorPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = 1;
poolInfo.pPoolSizes = &poolSize;
poolInfo.maxSets = static_cast<uint32_t>(m_swapChainImages.size());
if (vkCreateDescriptorPool(m_device, &poolInfo, nullptr, &m_descriptorPool) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create descriptor pool!");
}
}
void VulkanBaseApp::createDescriptorSets() {
std::vector<VkDescriptorSetLayout> layouts(m_swapChainImages.size(),
m_descriptorSetLayout);
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = m_descriptorPool;
allocInfo.descriptorSetCount =
static_cast<uint32_t>(m_swapChainImages.size());
allocInfo.pSetLayouts = layouts.data();
m_descriptorSets.resize(m_swapChainImages.size());
if (vkAllocateDescriptorSets(m_device, &allocInfo, m_descriptorSets.data()) !=
VK_SUCCESS) {
throw std::runtime_error("failed to allocate descriptor sets!");
}
VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.offset = 0;
bufferInfo.range = VK_WHOLE_SIZE;
VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.pImageInfo = nullptr; // Optional
descriptorWrite.pTexelBufferView = nullptr; // Optional
for (size_t i = 0; i < m_swapChainImages.size(); i++) {
bufferInfo.buffer = m_uniformBuffers[i];
descriptorWrite.dstSet = m_descriptorSets[i];
vkUpdateDescriptorSets(m_device, 1, &descriptorWrite, 0, nullptr);
}
}
void VulkanBaseApp::createCommandBuffers() {
m_commandBuffers.resize(m_swapChainFramebuffers.size());
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = m_commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t)m_commandBuffers.size();
if (vkAllocateCommandBuffers(m_device, &allocInfo, m_commandBuffers.data()) !=
VK_SUCCESS) {
throw std::runtime_error("failed to allocate command buffers!");
}
for (size_t i = 0; i < m_commandBuffers.size(); i++) {
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
beginInfo.pInheritanceInfo = nullptr; // Optional
if (vkBeginCommandBuffer(m_commandBuffers[i], &beginInfo) != VK_SUCCESS) {
throw std::runtime_error("failed to begin recording command buffer!");
}
VkRenderPassBeginInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = m_renderPass;
renderPassInfo.framebuffer = m_swapChainFramebuffers[i];
renderPassInfo.renderArea.offset = {0, 0};
renderPassInfo.renderArea.extent = m_swapChainExtent;
VkClearValue clearColors[2];
clearColors[0].color = {0.0f, 0.0f, 0.0f, 1.0f};
clearColors[1].depthStencil = {1.0f, 0};
renderPassInfo.clearValueCount = countof(clearColors);
renderPassInfo.pClearValues = clearColors;
vkCmdBeginRenderPass(m_commandBuffers[i], &renderPassInfo,
VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(m_commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS,
m_graphicsPipeline);
vkCmdBindDescriptorSets(m_commandBuffers[i],
VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout,
0, 1, &m_descriptorSets[i], 0, nullptr);
fillRenderingCommandBuffer(m_commandBuffers[i]);
vkCmdEndRenderPass(m_commandBuffers[i]);
if (vkEndCommandBuffer(m_commandBuffers[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
}
void VulkanBaseApp::createSyncObjects() {
VkSemaphoreCreateInfo semaphoreInfo = {};
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
m_inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
m_imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
m_renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
&m_imageAvailableSemaphores[i]) != VK_SUCCESS) {
throw std::runtime_error("Failed to create image available semaphore!");
}
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
&m_renderFinishedSemaphores[i]) != VK_SUCCESS) {
throw std::runtime_error("Failed to create image available semaphore!");
}
if (vkCreateFence(m_device, &fenceInfo, nullptr, &m_inFlightFences[i]) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to create image available semaphore!");
}
}
#ifdef _VK_TIMELINE_SEMAPHORE
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
&m_vkPresentationSemaphore) != VK_SUCCESS) {
throw std::runtime_error("Failed to create binary semaphore!");
}
#endif /* _VK_TIMELINE_SEMAPHORE */
}
void VulkanBaseApp::getWaitFrameSemaphores(
std::vector<VkSemaphore> &wait,
std::vector<VkPipelineStageFlags> &waitStages) const {}
void VulkanBaseApp::getSignalFrameSemaphores(
std::vector<VkSemaphore> &signal) const {}
VkDeviceSize VulkanBaseApp::getUniformSize() const { return VkDeviceSize(0); }
void VulkanBaseApp::updateUniformBuffer(uint32_t imageIndex) {}
void VulkanBaseApp::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties,
VkBuffer &buffer,
VkDeviceMemory &bufferMemory) {
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create buffer!");
}
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(
m_physicalDevice, memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(m_device, &allocInfo, nullptr, &bufferMemory) !=
VK_SUCCESS) {
throw std::runtime_error("failed to allocate buffer memory!");
}
vkBindBufferMemory(m_device, buffer, bufferMemory, 0);
}
void VulkanBaseApp::createExternalBuffer(
VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties,
VkExternalMemoryHandleTypeFlagsKHR extMemHandleType, VkBuffer &buffer,
VkDeviceMemory &bufferMemory) {
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkExternalMemoryBufferCreateInfo externalMemoryBufferInfo = {};
externalMemoryBufferInfo.sType =
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO;
externalMemoryBufferInfo.handleTypes = extMemHandleType;
bufferInfo.pNext = &externalMemoryBufferInfo;
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create buffer!");
}
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
#ifdef _WIN64
WindowsSecurityAttributes winSecurityAttributes;
VkExportMemoryWin32HandleInfoKHR vulkanExportMemoryWin32HandleInfoKHR = {};
vulkanExportMemoryWin32HandleInfoKHR.sType =
VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR;
vulkanExportMemoryWin32HandleInfoKHR.pNext = NULL;
vulkanExportMemoryWin32HandleInfoKHR.pAttributes = &winSecurityAttributes;
vulkanExportMemoryWin32HandleInfoKHR.dwAccess =
DXGI_SHARED_RESOURCE_READ | DXGI_SHARED_RESOURCE_WRITE;
vulkanExportMemoryWin32HandleInfoKHR.name = (LPCWSTR)NULL;
#endif /* _WIN64 */
VkExportMemoryAllocateInfoKHR vulkanExportMemoryAllocateInfoKHR = {};
vulkanExportMemoryAllocateInfoKHR.sType =
VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR;
#ifdef _WIN64
vulkanExportMemoryAllocateInfoKHR.pNext =
extMemHandleType & VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR
? &vulkanExportMemoryWin32HandleInfoKHR
: NULL;
vulkanExportMemoryAllocateInfoKHR.handleTypes = extMemHandleType;
#else
vulkanExportMemoryAllocateInfoKHR.pNext = NULL;
vulkanExportMemoryAllocateInfoKHR.handleTypes =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
#endif /* _WIN64 */
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = &vulkanExportMemoryAllocateInfoKHR;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(
m_physicalDevice, memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(m_device, &allocInfo, nullptr, &bufferMemory) !=
VK_SUCCESS) {
throw std::runtime_error("failed to allocate external buffer memory!");
}
vkBindBufferMemory(m_device, buffer, bufferMemory, 0);
}
void *VulkanBaseApp::getMemHandle(
VkDeviceMemory memory, VkExternalMemoryHandleTypeFlagBits handleType) {
#ifdef _WIN64
HANDLE handle = 0;
VkMemoryGetWin32HandleInfoKHR vkMemoryGetWin32HandleInfoKHR = {};
vkMemoryGetWin32HandleInfoKHR.sType =
VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR;
vkMemoryGetWin32HandleInfoKHR.pNext = NULL;
vkMemoryGetWin32HandleInfoKHR.memory = memory;
vkMemoryGetWin32HandleInfoKHR.handleType = handleType;
PFN_vkGetMemoryWin32HandleKHR fpGetMemoryWin32HandleKHR;
fpGetMemoryWin32HandleKHR =
(PFN_vkGetMemoryWin32HandleKHR)vkGetDeviceProcAddr(
m_device, "vkGetMemoryWin32HandleKHR");
if (!fpGetMemoryWin32HandleKHR) {
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
}
if (fpGetMemoryWin32HandleKHR(m_device, &vkMemoryGetWin32HandleInfoKHR,
&handle) != VK_SUCCESS) {
throw std::runtime_error("Failed to retrieve handle for buffer!");
}
return (void *)handle;
#else
int fd = -1;
VkMemoryGetFdInfoKHR vkMemoryGetFdInfoKHR = {};
vkMemoryGetFdInfoKHR.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR;
vkMemoryGetFdInfoKHR.pNext = NULL;
vkMemoryGetFdInfoKHR.memory = memory;
vkMemoryGetFdInfoKHR.handleType = handleType;
PFN_vkGetMemoryFdKHR fpGetMemoryFdKHR;
fpGetMemoryFdKHR =
(PFN_vkGetMemoryFdKHR)vkGetDeviceProcAddr(m_device, "vkGetMemoryFdKHR");
if (!fpGetMemoryFdKHR) {
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
}
if (fpGetMemoryFdKHR(m_device, &vkMemoryGetFdInfoKHR, &fd) != VK_SUCCESS) {
throw std::runtime_error("Failed to retrieve handle for buffer!");
}
return (void *)(uintptr_t)fd;
#endif /* _WIN64 */
}
void *VulkanBaseApp::getSemaphoreHandle(
VkSemaphore semaphore, VkExternalSemaphoreHandleTypeFlagBits handleType) {
#ifdef _WIN64
HANDLE handle;
VkSemaphoreGetWin32HandleInfoKHR semaphoreGetWin32HandleInfoKHR = {};
semaphoreGetWin32HandleInfoKHR.sType =
VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR;
semaphoreGetWin32HandleInfoKHR.pNext = NULL;
semaphoreGetWin32HandleInfoKHR.semaphore = semaphore;
semaphoreGetWin32HandleInfoKHR.handleType = handleType;
PFN_vkGetSemaphoreWin32HandleKHR fpGetSemaphoreWin32HandleKHR;
fpGetSemaphoreWin32HandleKHR =
(PFN_vkGetSemaphoreWin32HandleKHR)vkGetDeviceProcAddr(
m_device, "vkGetSemaphoreWin32HandleKHR");
if (!fpGetSemaphoreWin32HandleKHR) {
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
}
if (fpGetSemaphoreWin32HandleKHR(m_device, &semaphoreGetWin32HandleInfoKHR,
&handle) != VK_SUCCESS) {
throw std::runtime_error("Failed to retrieve handle for buffer!");
}
return (void *)handle;
#else
int fd;
VkSemaphoreGetFdInfoKHR semaphoreGetFdInfoKHR = {};
semaphoreGetFdInfoKHR.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
semaphoreGetFdInfoKHR.pNext = NULL;
semaphoreGetFdInfoKHR.semaphore = semaphore;
semaphoreGetFdInfoKHR.handleType = handleType;
PFN_vkGetSemaphoreFdKHR fpGetSemaphoreFdKHR;
fpGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)vkGetDeviceProcAddr(
m_device, "vkGetSemaphoreFdKHR");
if (!fpGetSemaphoreFdKHR) {
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
}
if (fpGetSemaphoreFdKHR(m_device, &semaphoreGetFdInfoKHR, &fd) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to retrieve handle for buffer!");
}
return (void *)(uintptr_t)fd;
#endif /* _WIN64 */
}
void VulkanBaseApp::createExternalSemaphore(
VkSemaphore &semaphore, VkExternalSemaphoreHandleTypeFlagBits handleType) {
VkSemaphoreCreateInfo semaphoreInfo = {};
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkExportSemaphoreCreateInfoKHR exportSemaphoreCreateInfo = {};
exportSemaphoreCreateInfo.sType =
VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR;
#ifdef _VK_TIMELINE_SEMAPHORE
VkSemaphoreTypeCreateInfo timelineCreateInfo;
timelineCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO;
timelineCreateInfo.pNext = NULL;
timelineCreateInfo.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE;
timelineCreateInfo.initialValue = 0;
exportSemaphoreCreateInfo.pNext = &timelineCreateInfo;
#else
exportSemaphoreCreateInfo.pNext = NULL;
#endif /* _VK_TIMELINE_SEMAPHORE */
exportSemaphoreCreateInfo.handleTypes = handleType;
semaphoreInfo.pNext = &exportSemaphoreCreateInfo;
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &semaphore) !=
VK_SUCCESS) {
throw std::runtime_error(
"failed to create synchronization objects for a CUDA-Vulkan!");
}
}
void VulkanBaseApp::importExternalBuffer(
void *handle, VkExternalMemoryHandleTypeFlagBits handleType, size_t size,
VkBufferUsageFlags usage, VkMemoryPropertyFlags properties,
VkBuffer &buffer, VkDeviceMemory &memory) {
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create buffer!");
}
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
#ifdef _WIN64
VkImportMemoryWin32HandleInfoKHR handleInfo = {};
handleInfo.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR;
handleInfo.pNext = NULL;
handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT;
handleInfo.handle = handle;
handleInfo.name = NULL;
#else
VkImportMemoryFdInfoKHR handleInfo = {};
handleInfo.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
handleInfo.pNext = NULL;
handleInfo.fd = (int)(uintptr_t)handle;
handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
#endif /* _WIN64 */
VkMemoryAllocateInfo memAllocation = {};
memAllocation.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocation.pNext = (void *)&handleInfo;
memAllocation.allocationSize = size;
memAllocation.memoryTypeIndex = findMemoryType(
m_physicalDevice, memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(m_device, &memAllocation, nullptr, &memory) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to import allocation!");
}
vkBindBufferMemory(m_device, buffer, memory, 0);
}
void VulkanBaseApp::copyBuffer(VkBuffer dst, VkBuffer src, VkDeviceSize size) {
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkBufferCopy copyRegion = {};
copyRegion.size = size;
vkCmdCopyBuffer(commandBuffer, src, dst, 1, &copyRegion);
endSingleTimeCommands(commandBuffer);
}
#ifdef _VK_TIMELINE_SEMAPHORE
void VulkanBaseApp::drawFrame() {
const uint64_t waitValue = 0;
const uint64_t signalValue = 1;
VkSemaphoreWaitInfo semaphoreWaitInfo = {};
semaphoreWaitInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO;
semaphoreWaitInfo.pSemaphores = &m_vkTimelineSemaphore;
semaphoreWaitInfo.semaphoreCount = 1;
semaphoreWaitInfo.pValues = &waitValue;
vkWaitSemaphores(m_device, &semaphoreWaitInfo,
std::numeric_limits<uint64_t>::max());
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(
m_device, m_swapChain, std::numeric_limits<uint64_t>::max(),
m_vkPresentationSemaphore, VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapChain();
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
throw std::runtime_error("Failed to acquire swap chain image!");
}
updateUniformBuffer(imageIndex);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
std::vector<VkSemaphore> waitSemaphores;
std::vector<VkPipelineStageFlags> waitStages;
waitSemaphores.push_back(m_vkTimelineSemaphore);
waitStages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
submitInfo.waitSemaphoreCount = (uint32_t)waitSemaphores.size();
submitInfo.pWaitSemaphores = waitSemaphores.data();
submitInfo.pWaitDstStageMask = waitStages.data();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_commandBuffers[imageIndex];
std::vector<VkSemaphore> signalSemaphores;
signalSemaphores.push_back(m_vkTimelineSemaphore);
submitInfo.signalSemaphoreCount = (uint32_t)signalSemaphores.size();
submitInfo.pSignalSemaphores = signalSemaphores.data();
VkTimelineSemaphoreSubmitInfo timelineInfo = {};
timelineInfo.sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO;
timelineInfo.waitSemaphoreValueCount = 1;
timelineInfo.pWaitSemaphoreValues = &waitValue;
timelineInfo.signalSemaphoreValueCount = 1;
timelineInfo.pSignalSemaphoreValues = &signalValue;
submitInfo.pNext = &timelineInfo;
if (vkQueueSubmit(m_graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) !=
VK_SUCCESS) {
throw std::runtime_error("failed to submit draw command buffer!");
}
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &m_vkPresentationSemaphore;
VkSwapchainKHR swapChains[] = {m_swapChain};
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imageIndex;
result = vkQueuePresentKHR(m_presentQueue, &presentInfo);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
m_framebufferResized) {
recreateSwapChain();
m_framebufferResized = false;
} else if (result != VK_SUCCESS) {
throw std::runtime_error("Failed to acquire swap chain image!");
}
m_currentFrame++;
}
#else
void VulkanBaseApp::drawFrame() {
size_t currentFrameIdx = m_currentFrame % MAX_FRAMES_IN_FLIGHT;
vkWaitForFences(m_device, 1, &m_inFlightFences[currentFrameIdx], VK_TRUE,
std::numeric_limits<uint64_t>::max());
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(
m_device, m_swapChain, std::numeric_limits<uint64_t>::max(),
m_imageAvailableSemaphores[currentFrameIdx], VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapChain();
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
throw std::runtime_error("Failed to acquire swap chain image!");
}
updateUniformBuffer(imageIndex);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
std::vector<VkSemaphore> waitSemaphores;
std::vector<VkPipelineStageFlags> waitStages;
waitSemaphores.push_back(m_imageAvailableSemaphores[currentFrameIdx]);
waitStages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
getWaitFrameSemaphores(waitSemaphores, waitStages);
submitInfo.waitSemaphoreCount = (uint32_t)waitSemaphores.size();
submitInfo.pWaitSemaphores = waitSemaphores.data();
submitInfo.pWaitDstStageMask = waitStages.data();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_commandBuffers[imageIndex];
std::vector<VkSemaphore> signalSemaphores;
getSignalFrameSemaphores(signalSemaphores);
signalSemaphores.push_back(m_renderFinishedSemaphores[currentFrameIdx]);
submitInfo.signalSemaphoreCount = (uint32_t)signalSemaphores.size();
submitInfo.pSignalSemaphores = signalSemaphores.data();
vkResetFences(m_device, 1, &m_inFlightFences[currentFrameIdx]);
if (vkQueueSubmit(m_graphicsQueue, 1, &submitInfo,
m_inFlightFences[currentFrameIdx]) != VK_SUCCESS) {
throw std::runtime_error("failed to submit draw command buffer!");
}
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &m_renderFinishedSemaphores[currentFrameIdx];
VkSwapchainKHR swapChains[] = {m_swapChain};
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imageIndex;
result = vkQueuePresentKHR(m_presentQueue, &presentInfo);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
m_framebufferResized) {
recreateSwapChain();
m_framebufferResized = false;
} else if (result != VK_SUCCESS) {
throw std::runtime_error("Failed to acquire swap chain image!");
}
m_currentFrame++;
}
#endif /* _VK_TIMELINE_SEMAPHORE */
void VulkanBaseApp::cleanupSwapChain() {
if (m_depthImageView != VK_NULL_HANDLE) {
vkDestroyImageView(m_device, m_depthImageView, nullptr);
}
if (m_depthImage != VK_NULL_HANDLE) {
vkDestroyImage(m_device, m_depthImage, nullptr);
}
if (m_depthImageMemory != VK_NULL_HANDLE) {
vkFreeMemory(m_device, m_depthImageMemory, nullptr);
}
for (size_t i = 0; i < m_uniformBuffers.size(); i++) {
vkDestroyBuffer(m_device, m_uniformBuffers[i], nullptr);
vkFreeMemory(m_device, m_uniformMemory[i], nullptr);
}
if (m_descriptorPool != VK_NULL_HANDLE) {
vkDestroyDescriptorPool(m_device, m_descriptorPool, nullptr);
}
for (size_t i = 0; i < m_swapChainFramebuffers.size(); i++) {
vkDestroyFramebuffer(m_device, m_swapChainFramebuffers[i], nullptr);
}
if (m_graphicsPipeline != VK_NULL_HANDLE) {
vkDestroyPipeline(m_device, m_graphicsPipeline, nullptr);
}
if (m_pipelineLayout != VK_NULL_HANDLE) {
vkDestroyPipelineLayout(m_device, m_pipelineLayout, nullptr);
}
if (m_renderPass != VK_NULL_HANDLE) {
vkDestroyRenderPass(m_device, m_renderPass, nullptr);
}
for (size_t i = 0; i < m_swapChainImageViews.size(); i++) {
vkDestroyImageView(m_device, m_swapChainImageViews[i], nullptr);
}
if (m_swapChain != VK_NULL_HANDLE) {
vkDestroySwapchainKHR(m_device, m_swapChain, nullptr);
}
}
void VulkanBaseApp::recreateSwapChain() {
int width, height;
glfwGetFramebufferSize(m_window, &width, &height);
while (width == 0 || height == 0) {
glfwWaitEvents();
glfwGetFramebufferSize(m_window, &width, &height);
}
vkDeviceWaitIdle(m_device);
cleanupSwapChain();
createSwapChain();
createImageViews();
createRenderPass();
createGraphicsPipeline();
createDepthResources();
createFramebuffers();
createUniformBuffers();
createDescriptorPool();
createDescriptorSets();
createCommandBuffers();
}
void VulkanBaseApp::mainLoop() {
while (!glfwWindowShouldClose(m_window)) {
glfwPollEvents();
drawFrame();
}
vkDeviceWaitIdle(m_device);
}
void readFile(std::istream &s, std::vector<char> &data) {
s.seekg(0, std::ios_base::end);
data.resize(s.tellg());
s.clear();
s.seekg(0, std::ios_base::beg);
s.read(data.data(), data.size());
}