mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:05:51 +08:00
227 lines
6.8 KiB
C++
227 lines
6.8 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Vector addition: C = A + B.
|
|
*
|
|
* This sample is a very basic sample that implements element by element
|
|
* vector addition. It loads a cuda fatbinary and runs vector addition kernel.
|
|
* Uses both Driver and Runtime CUDA APIs for different purposes.
|
|
*/
|
|
|
|
// Includes
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
|
|
// includes, project
|
|
#include <helper_cuda.h>
|
|
#include <helper_functions.h>
|
|
|
|
// includes, CUDA
|
|
#include <builtin_types.h>
|
|
|
|
using namespace std;
|
|
|
|
#ifndef FATBIN_FILE
|
|
#define FATBIN_FILE "vectorAdd_kernel64.fatbin"
|
|
#endif
|
|
|
|
// Variables
|
|
float *h_A;
|
|
float *h_B;
|
|
float *h_C;
|
|
float *d_A;
|
|
float *d_B;
|
|
float *d_C;
|
|
|
|
// Functions
|
|
int CleanupNoFailure(CUcontext &cuContext);
|
|
void RandomInit(float *, int);
|
|
bool findModulePath(const char *, string &, char **, ostringstream &);
|
|
|
|
static void check(CUresult result, char const *const func,
|
|
const char *const file, int const line) {
|
|
if (result) {
|
|
fprintf(stderr, "CUDA error at %s:%d code=%d \"%s\" \n", file, line,
|
|
static_cast<unsigned int>(result), func);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
#define checkCudaDrvErrors(val) check((val), #val, __FILE__, __LINE__)
|
|
|
|
// Host code
|
|
int main(int argc, char **argv) {
|
|
printf("simpleDrvRuntime..\n");
|
|
int N = 50000, devID = 0;
|
|
size_t size = N * sizeof(float);
|
|
CUdevice cuDevice;
|
|
CUfunction vecAdd_kernel;
|
|
CUmodule cuModule = 0;
|
|
CUcontext cuContext;
|
|
|
|
// Initialize
|
|
checkCudaDrvErrors(cuInit(0));
|
|
|
|
cuDevice = findCudaDevice(argc, (const char **)argv);
|
|
// Create context
|
|
checkCudaDrvErrors(cuCtxCreate(&cuContext, 0, cuDevice));
|
|
|
|
// first search for the module path before we load the results
|
|
string module_path;
|
|
ostringstream fatbin;
|
|
|
|
if (!findModulePath(FATBIN_FILE, module_path, argv, fatbin)) {
|
|
exit(EXIT_FAILURE);
|
|
} else {
|
|
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
|
|
}
|
|
|
|
if (!fatbin.str().size()) {
|
|
printf("fatbin file empty. exiting..\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Create module from binary file (FATBIN)
|
|
checkCudaDrvErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str()));
|
|
|
|
// Get function handle from module
|
|
checkCudaDrvErrors(
|
|
cuModuleGetFunction(&vecAdd_kernel, cuModule, "VecAdd_kernel"));
|
|
|
|
// Allocate input vectors h_A and h_B in host memory
|
|
checkCudaErrors(cudaMallocHost(&h_A, size));
|
|
checkCudaErrors(cudaMallocHost(&h_B, size));
|
|
checkCudaErrors(cudaMallocHost(&h_C, size));
|
|
|
|
// Initialize input vectors
|
|
RandomInit(h_A, N);
|
|
RandomInit(h_B, N);
|
|
|
|
// Allocate vectors in device memory
|
|
checkCudaErrors(cudaMalloc((void **)(&d_A), size));
|
|
checkCudaErrors(cudaMalloc((void **)(&d_B), size));
|
|
checkCudaErrors(cudaMalloc((void **)(&d_C), size));
|
|
|
|
cudaStream_t stream;
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
// Copy vectors from host memory to device memory
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, stream));
|
|
|
|
int threadsPerBlock = 256;
|
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
void *args[] = {&d_A, &d_B, &d_C, &N};
|
|
|
|
// Launch the CUDA kernel
|
|
checkCudaDrvErrors(cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1,
|
|
threadsPerBlock, 1, 1, 0, stream, args,
|
|
NULL));
|
|
|
|
// Copy result from device memory to host memory
|
|
// h_C contains the result in host memory
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(h_C, d_C, size, cudaMemcpyDeviceToHost, stream));
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
// Verify result
|
|
int i;
|
|
|
|
for (i = 0; i < N; ++i) {
|
|
float sum = h_A[i] + h_B[i];
|
|
|
|
if (fabs(h_C[i] - sum) > 1e-7f) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
checkCudaDrvErrors(cuModuleUnload(cuModule));
|
|
CleanupNoFailure(cuContext);
|
|
printf("%s\n", (i == N) ? "Result = PASS" : "Result = FAIL");
|
|
|
|
exit((i == N) ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
int CleanupNoFailure(CUcontext &cuContext) {
|
|
// Free device memory
|
|
checkCudaErrors(cudaFree(d_A));
|
|
checkCudaErrors(cudaFree(d_B));
|
|
checkCudaErrors(cudaFree(d_C));
|
|
|
|
// Free host memory
|
|
if (h_A) {
|
|
checkCudaErrors(cudaFreeHost(h_A));
|
|
}
|
|
|
|
if (h_B) {
|
|
checkCudaErrors(cudaFreeHost(h_B));
|
|
}
|
|
|
|
if (h_C) {
|
|
checkCudaErrors(cudaFreeHost(h_C));
|
|
}
|
|
|
|
checkCudaDrvErrors(cuCtxDestroy(cuContext));
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
// Allocates an array with random float entries.
|
|
void RandomInit(float *data, int n) {
|
|
for (int i = 0; i < n; ++i) {
|
|
data[i] = rand() / (float)RAND_MAX;
|
|
}
|
|
}
|
|
|
|
bool inline findModulePath(const char *module_file, string &module_path,
|
|
char **argv, ostringstream &ostrm) {
|
|
char *actual_path = sdkFindFilePath(module_file, argv[0]);
|
|
|
|
if (actual_path) {
|
|
module_path = actual_path;
|
|
} else {
|
|
printf("> findModulePath file not found: <%s> \n", module_file);
|
|
return false;
|
|
}
|
|
|
|
if (module_path.empty()) {
|
|
printf("> findModulePath could not find file: <%s> \n", module_file);
|
|
return false;
|
|
} else {
|
|
printf("> findModulePath found file at <%s>\n", module_path.c_str());
|
|
if (module_path.rfind("fatbin") != string::npos) {
|
|
ifstream fileIn(module_path.c_str(), ios::binary);
|
|
ostrm << fileIn.rdbuf();
|
|
}
|
|
return true;
|
|
}
|
|
}
|