mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 19:29:19 +08:00
614 lines
20 KiB
Plaintext
614 lines
20 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Transpose
|
|
//
|
|
// This file contains both device and host code for transposing a floating-point
|
|
// matrix. It performs several transpose kernels, which incrementally improve
|
|
// performance through coalescing, removing shared memory bank conflicts, and
|
|
// eliminating partition camping. Several of the kernels perform a copy, used
|
|
// to represent the best case performance that a transpose can achieve.
|
|
//
|
|
// Please see the whitepaper in the docs folder of the transpose project for a
|
|
// detailed description of this performance study.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
// Utilities and system includes
|
|
#include <helper_string.h> // helper for string parsing
|
|
#include <helper_image.h> // helper for image and data comparison
|
|
#include <helper_cuda.h> // helper for cuda error checking functions
|
|
|
|
const char *sSDKsample = "Transpose";
|
|
|
|
// Each block transposes/copies a tile of TILE_DIM x TILE_DIM elements
|
|
// using TILE_DIM x BLOCK_ROWS threads, so that each thread transposes
|
|
// TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of
|
|
// BLOCK_ROWS
|
|
|
|
#define TILE_DIM 16
|
|
#define BLOCK_ROWS 16
|
|
|
|
// This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y
|
|
int MATRIX_SIZE_X = 1024;
|
|
int MATRIX_SIZE_Y = 1024;
|
|
int MUL_FACTOR = TILE_DIM;
|
|
|
|
#define FLOOR(a, b) (a - (a % b))
|
|
|
|
// Compute the tile size necessary to illustrate performance cases for SM20+
|
|
// hardware
|
|
int MAX_TILES = (FLOOR(MATRIX_SIZE_X, 512) * FLOOR(MATRIX_SIZE_Y, 512)) /
|
|
(TILE_DIM * TILE_DIM);
|
|
|
|
// Number of repetitions used for timing. Two sets of repetitions are
|
|
// performed: 1) over kernel launches and 2) inside the kernel over just the
|
|
// loads and stores
|
|
|
|
#define NUM_REPS 100
|
|
|
|
// -------------------------------------------------------
|
|
// Copies
|
|
// width and height must be integral multiples of TILE_DIM
|
|
// -------------------------------------------------------
|
|
|
|
__global__ void copy(float *odata, float *idata, int width, int height) {
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
|
|
int index = xIndex + width * yIndex;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index + i * width] = idata[index + i * width];
|
|
}
|
|
}
|
|
|
|
__global__ void copySharedMem(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float tile[TILE_DIM][TILE_DIM];
|
|
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
|
|
int index = xIndex + width * yIndex;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
if (xIndex < width && yIndex < height) {
|
|
tile[threadIdx.y][threadIdx.x] = idata[index];
|
|
}
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
if (xIndex < height && yIndex < width) {
|
|
odata[index] = tile[threadIdx.y][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------
|
|
// Transposes
|
|
// width and height must be integral multiples of TILE_DIM
|
|
// -------------------------------------------------------
|
|
|
|
__global__ void transposeNaive(float *odata, float *idata, int width,
|
|
int height) {
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
|
|
int index_in = xIndex + width * yIndex;
|
|
int index_out = yIndex + height * xIndex;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index_out + i] = idata[index_in + i * width];
|
|
}
|
|
}
|
|
|
|
// coalesced transpose (with bank conflicts)
|
|
|
|
__global__ void transposeCoalesced(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float tile[TILE_DIM][TILE_DIM];
|
|
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
int index_in = xIndex + (yIndex)*width;
|
|
|
|
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
|
|
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
|
|
int index_out = xIndex + (yIndex)*height;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
|
|
}
|
|
}
|
|
|
|
// Coalesced transpose with no bank conflicts
|
|
|
|
__global__ void transposeNoBankConflicts(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
|
|
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
int index_in = xIndex + (yIndex)*width;
|
|
|
|
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
|
|
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
|
|
int index_out = xIndex + (yIndex)*height;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
|
|
}
|
|
}
|
|
|
|
// Transpose that effectively reorders execution of thread blocks along
|
|
// diagonals of the matrix (also coalesced and has no bank conflicts)
|
|
//
|
|
// Here blockIdx.x is interpreted as the distance along a diagonal and
|
|
// blockIdx.y as corresponding to different diagonals
|
|
//
|
|
// blockIdx_x and blockIdx_y expressions map the diagonal coordinates to the
|
|
// more commonly used cartesian coordinates so that the only changes to the code
|
|
// from the coalesced version are the calculation of the blockIdx_x and
|
|
// blockIdx_y and replacement of blockIdx.x and bloclIdx.y with the subscripted
|
|
// versions in the remaining code
|
|
|
|
__global__ void transposeDiagonal(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
|
|
|
|
int blockIdx_x, blockIdx_y;
|
|
|
|
// do diagonal reordering
|
|
if (width == height) {
|
|
blockIdx_y = blockIdx.x;
|
|
blockIdx_x = (blockIdx.x + blockIdx.y) % gridDim.x;
|
|
} else {
|
|
int bid = blockIdx.x + gridDim.x * blockIdx.y;
|
|
blockIdx_y = bid % gridDim.y;
|
|
blockIdx_x = ((bid / gridDim.y) + blockIdx_y) % gridDim.x;
|
|
}
|
|
|
|
// from here on the code is same as previous kernel except blockIdx_x replaces
|
|
// blockIdx.x and similarly for y
|
|
|
|
int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;
|
|
int index_in = xIndex + (yIndex)*width;
|
|
|
|
xIndex = blockIdx_y * TILE_DIM + threadIdx.x;
|
|
yIndex = blockIdx_x * TILE_DIM + threadIdx.y;
|
|
int index_out = xIndex + (yIndex)*height;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Partial transposes
|
|
// NB: the coarse- and fine-grained routines only perform part of a
|
|
// transpose and will fail the test against the reference solution
|
|
//
|
|
// They are used to assess performance characteristics of different
|
|
// components of a full transpose
|
|
// --------------------------------------------------------------------
|
|
|
|
__global__ void transposeFineGrained(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float block[TILE_DIM][TILE_DIM + 1];
|
|
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
int index = xIndex + (yIndex)*width;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
block[threadIdx.y + i][threadIdx.x] = idata[index + i * width];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index + i * height] = block[threadIdx.x][threadIdx.y + i];
|
|
}
|
|
}
|
|
|
|
__global__ void transposeCoarseGrained(float *odata, float *idata, int width,
|
|
int height) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ float block[TILE_DIM][TILE_DIM + 1];
|
|
|
|
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
|
|
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
|
|
int index_in = xIndex + (yIndex)*width;
|
|
|
|
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
|
|
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
|
|
int index_out = xIndex + (yIndex)*height;
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
block[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
|
|
odata[index_out + i * height] = block[threadIdx.y + i][threadIdx.x];
|
|
}
|
|
}
|
|
|
|
// ---------------------
|
|
// host utility routines
|
|
// ---------------------
|
|
|
|
void computeTransposeGold(float *gold, float *idata, const int size_x,
|
|
const int size_y) {
|
|
for (int y = 0; y < size_y; ++y) {
|
|
for (int x = 0; x < size_x; ++x) {
|
|
gold[(x * size_y) + y] = idata[(y * size_x) + x];
|
|
}
|
|
}
|
|
}
|
|
|
|
void getParams(int argc, char **argv, cudaDeviceProp &deviceProp, int &size_x,
|
|
int &size_y, int max_tile_dim) {
|
|
// set matrix size (if (x,y) dim of matrix is not square, then this will have
|
|
// to be modified
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "dimX")) {
|
|
size_x = getCmdLineArgumentInt(argc, (const char **)argv, "dimX");
|
|
|
|
if (size_x > max_tile_dim) {
|
|
printf("> MatrixSize X = %d is greater than the recommended size = %d\n",
|
|
size_x, max_tile_dim);
|
|
} else {
|
|
printf("> MatrixSize X = %d\n", size_x);
|
|
}
|
|
} else {
|
|
size_x = max_tile_dim;
|
|
size_x = FLOOR(size_x, 512);
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "dimY")) {
|
|
size_y = getCmdLineArgumentInt(argc, (const char **)argv, "dimY");
|
|
|
|
if (size_y > max_tile_dim) {
|
|
printf("> MatrixSize Y = %d is greater than the recommended size = %d\n",
|
|
size_y, max_tile_dim);
|
|
} else {
|
|
printf("> MatrixSize Y = %d\n", size_y);
|
|
}
|
|
} else {
|
|
size_y = max_tile_dim;
|
|
size_y = FLOOR(size_y, 512);
|
|
}
|
|
}
|
|
|
|
void showHelp() {
|
|
printf("\n%s : Command line options\n", sSDKsample);
|
|
printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n");
|
|
printf("> The default matrix size can be overridden with these parameters\n");
|
|
printf("\t-dimX=row_dim_size (matrix row dimensions)\n");
|
|
printf("\t-dimY=col_dim_size (matrix column dimensions)\n");
|
|
}
|
|
|
|
// ----
|
|
// main
|
|
// ----
|
|
|
|
int main(int argc, char **argv) {
|
|
// Start logs
|
|
printf("%s Starting...\n\n", sSDKsample);
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
|
|
showHelp();
|
|
return 0;
|
|
}
|
|
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
cudaDeviceProp deviceProp;
|
|
|
|
// get number of SMs on this GPU
|
|
checkCudaErrors(cudaGetDevice(&devID));
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
|
|
|
|
// compute the scaling factor (for GPUs with fewer MPs)
|
|
float scale_factor, total_tiles;
|
|
scale_factor =
|
|
max((192.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
|
|
(float)deviceProp.multiProcessorCount)),
|
|
1.0f);
|
|
|
|
printf("> Device %d: \"%s\"\n", devID, deviceProp.name);
|
|
printf("> SM Capability %d.%d detected:\n", deviceProp.major,
|
|
deviceProp.minor);
|
|
|
|
// Calculate number of tiles we will run for the Matrix Transpose performance
|
|
// tests
|
|
int size_x, size_y, max_matrix_dim, matrix_size_test;
|
|
|
|
matrix_size_test = 512; // we round down max_matrix_dim for this perf test
|
|
total_tiles = (float)MAX_TILES / scale_factor;
|
|
|
|
max_matrix_dim =
|
|
FLOOR((int)(floor(sqrt(total_tiles)) * TILE_DIM), matrix_size_test);
|
|
|
|
// This is the minimum size allowed
|
|
if (max_matrix_dim == 0) {
|
|
max_matrix_dim = matrix_size_test;
|
|
}
|
|
|
|
printf("> [%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name,
|
|
deviceProp.multiProcessorCount,
|
|
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
|
|
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
|
|
deviceProp.multiProcessorCount);
|
|
|
|
printf("> Compute performance scaling factor = %4.2f\n", scale_factor);
|
|
|
|
// Extract parameters if there are any, command line -dimx and -dimy can
|
|
// override any of these settings
|
|
getParams(argc, argv, deviceProp, size_x, size_y, max_matrix_dim);
|
|
|
|
if (size_x != size_y) {
|
|
printf(
|
|
"\n[%s] does not support non-square matrices (row_dim_size(%d) != "
|
|
"col_dim_size(%d))\nExiting...\n\n",
|
|
sSDKsample, size_x, size_y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (size_x % TILE_DIM != 0 || size_y % TILE_DIM != 0) {
|
|
printf(
|
|
"[%s] Matrix size must be integral multiple of tile "
|
|
"size\nExiting...\n\n",
|
|
sSDKsample);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// kernel pointer and descriptor
|
|
void (*kernel)(float *, float *, int, int);
|
|
const char *kernelName;
|
|
|
|
// execution configuration parameters
|
|
dim3 grid(size_x / TILE_DIM, size_y / TILE_DIM),
|
|
threads(TILE_DIM, BLOCK_ROWS);
|
|
|
|
if (grid.x < 1 || grid.y < 1) {
|
|
printf("[%s] grid size computation incorrect in test \nExiting...\n\n",
|
|
sSDKsample);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// CUDA events
|
|
cudaEvent_t start, stop;
|
|
|
|
// size of memory required to store the matrix
|
|
size_t mem_size = static_cast<size_t>(sizeof(float) * size_x * size_y);
|
|
|
|
if (2 * mem_size > deviceProp.totalGlobalMem) {
|
|
printf("Input matrix size is larger than the available device memory!\n");
|
|
printf("Please choose a smaller size matrix\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// allocate host memory
|
|
float *h_idata = (float *)malloc(mem_size);
|
|
float *h_odata = (float *)malloc(mem_size);
|
|
float *transposeGold = (float *)malloc(mem_size);
|
|
float *gold;
|
|
|
|
// allocate device memory
|
|
float *d_idata, *d_odata;
|
|
checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size));
|
|
checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size));
|
|
|
|
// initialize host data
|
|
for (int i = 0; i < (size_x * size_y); ++i) {
|
|
h_idata[i] = (float)i;
|
|
}
|
|
|
|
// copy host data to device
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice));
|
|
|
|
// Compute reference transpose solution
|
|
computeTransposeGold(transposeGold, h_idata, size_x, size_y);
|
|
|
|
// print out common data for all kernels
|
|
printf(
|
|
"\nMatrix size: %dx%d (%dx%d tiles), tile size: %dx%d, block size: "
|
|
"%dx%d\n\n",
|
|
size_x, size_y, size_x / TILE_DIM, size_y / TILE_DIM, TILE_DIM, TILE_DIM,
|
|
TILE_DIM, BLOCK_ROWS);
|
|
|
|
// initialize events
|
|
checkCudaErrors(cudaEventCreate(&start));
|
|
checkCudaErrors(cudaEventCreate(&stop));
|
|
|
|
//
|
|
// loop over different kernels
|
|
//
|
|
|
|
bool success = true;
|
|
|
|
for (int k = 0; k < 8; k++) {
|
|
// set kernel pointer
|
|
switch (k) {
|
|
case 0:
|
|
kernel = ©
|
|
kernelName = "simple copy ";
|
|
break;
|
|
|
|
case 1:
|
|
kernel = ©SharedMem;
|
|
kernelName = "shared memory copy";
|
|
break;
|
|
|
|
case 2:
|
|
kernel = &transposeNaive;
|
|
kernelName = "naive ";
|
|
break;
|
|
|
|
case 3:
|
|
kernel = &transposeCoalesced;
|
|
kernelName = "coalesced ";
|
|
break;
|
|
|
|
case 4:
|
|
kernel = &transposeNoBankConflicts;
|
|
kernelName = "optimized ";
|
|
break;
|
|
|
|
case 5:
|
|
kernel = &transposeCoarseGrained;
|
|
kernelName = "coarse-grained ";
|
|
break;
|
|
|
|
case 6:
|
|
kernel = &transposeFineGrained;
|
|
kernelName = "fine-grained ";
|
|
break;
|
|
|
|
case 7:
|
|
kernel = &transposeDiagonal;
|
|
kernelName = "diagonal ";
|
|
break;
|
|
}
|
|
|
|
// set reference solution
|
|
if (kernel == © || kernel == ©SharedMem) {
|
|
gold = h_idata;
|
|
} else if (kernel == &transposeCoarseGrained ||
|
|
kernel == &transposeFineGrained) {
|
|
gold = h_odata; // fine- and coarse-grained kernels are not full
|
|
// transposes, so bypass check
|
|
} else {
|
|
gold = transposeGold;
|
|
}
|
|
|
|
// Clear error status
|
|
checkCudaErrors(cudaGetLastError());
|
|
|
|
// warmup to avoid timing startup
|
|
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
|
|
|
|
// take measurements for loop over kernel launches
|
|
checkCudaErrors(cudaEventRecord(start, 0));
|
|
|
|
for (int i = 0; i < NUM_REPS; i++) {
|
|
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
|
|
// Ensure no launch failure
|
|
checkCudaErrors(cudaGetLastError());
|
|
}
|
|
|
|
checkCudaErrors(cudaEventRecord(stop, 0));
|
|
checkCudaErrors(cudaEventSynchronize(stop));
|
|
float kernelTime;
|
|
checkCudaErrors(cudaEventElapsedTime(&kernelTime, start, stop));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
|
|
bool res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
|
|
|
|
if (res == false) {
|
|
printf("*** %s kernel FAILED ***\n", kernelName);
|
|
success = false;
|
|
}
|
|
|
|
// take measurements for loop inside kernel
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
|
|
res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
|
|
|
|
if (res == false) {
|
|
printf("*** %s kernel FAILED ***\n", kernelName);
|
|
success = false;
|
|
}
|
|
|
|
// report effective bandwidths
|
|
float kernelBandwidth = 2.0f * 1000.0f * mem_size / (1024 * 1024 * 1024) /
|
|
(kernelTime / NUM_REPS);
|
|
printf(
|
|
"transpose %s, Throughput = %.4f GB/s, Time = %.5f ms, Size = %u fp32 "
|
|
"elements, NumDevsUsed = %u, Workgroup = %u\n",
|
|
kernelName, kernelBandwidth, kernelTime / NUM_REPS, (size_x * size_y),
|
|
1, TILE_DIM * BLOCK_ROWS);
|
|
}
|
|
|
|
// cleanup
|
|
free(h_idata);
|
|
free(h_odata);
|
|
free(transposeGold);
|
|
cudaFree(d_idata);
|
|
cudaFree(d_odata);
|
|
|
|
checkCudaErrors(cudaEventDestroy(start));
|
|
checkCudaErrors(cudaEventDestroy(stop));
|
|
|
|
if (!success) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("Test passed\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|