cuda-samples/Samples/scalarProd/scalarProd_kernel.cuh
2021-10-21 16:34:49 +05:30

97 lines
4.5 KiB
Plaintext

/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
///////////////////////////////////////////////////////////////////////////////
// On G80-class hardware 24-bit multiplication takes 4 clocks per warp
// (the same as for floating point multiplication and addition),
// whereas full 32-bit multiplication takes 16 clocks per warp.
// So if integer multiplication operands are guaranteed to fit into 24 bits
// (always lie within [-8M, 8M - 1] range in signed case),
// explicit 24-bit multiplication is preferred for performance.
///////////////////////////////////////////////////////////////////////////////
#define IMUL(a, b) __mul24(a, b)
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
// Parameters restrictions:
// 1) ElementN is strongly preferred to be a multiple of warp size to
// meet alignment constraints of memory coalescing.
// 2) ACCUM_N must be a power of two.
///////////////////////////////////////////////////////////////////////////////
#define ACCUM_N 1024
__global__ void scalarProdGPU(float *d_C, float *d_A, float *d_B, int vectorN,
int elementN) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// Accumulators cache
__shared__ float accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x) {
int vectorBase = IMUL(elementN, vec);
int vectorEnd = vectorBase + elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x) {
float sum = 0;
for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
sum += d_A[pos] * d_B[pos];
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1) {
cg::sync(cta);
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
accumResult[iAccum] += accumResult[stride + iAccum];
}
cg::sync(cta);
if (threadIdx.x == 0) d_C[vec] = accumResult[0];
}
}