cuda-samples/Samples/fluidsGLES/fluidsGLES.cpp
2021-10-21 16:34:49 +05:30

733 lines
20 KiB
C++

/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
// Includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <unistd.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
void error_exit(const char* format, ... )
{
va_list args;
va_start( args, format );
vfprintf( stderr, format, args );
va_end( args );
exit(1);
}
// GLES related includes and Xlib and EGL stuff
#include "graphics_interface.h"
// CUDA standard includes
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>
// CUDA FFT Libraries
#include <cufft.h>
// CUDA helper functions
#include <helper_functions.h>
#include <rendercheck_gles.h>
#include <helper_cuda.h>
#include "defines.h"
#include "fluidsGLES_kernels.h"
typedef float matrix4[4][4];
typedef float vector3[3];
#define MAX_EPSILON_ERROR 1.0f
const char *sSDKname = "fluidsGLES";
// CUDA example code that implements the frequency space version of
// Jos Stam's paper 'Stable Fluids' in 2D. This application uses the
// CUDA FFT library (CUFFT) to perform velocity diffusion and to
// force non-divergence in the velocity field at each time step. It uses
// CUDA-OpenGLES interoperability to update the particle field directly
// instead of doing a copy to system memory before drawing. Texture is
// used for automatic bilinear interpolation at the velocity advection step.
void cleanup(void);
void reshape(int x, int y);
// CUFFT plan handle
cufftHandle planr2c;
cufftHandle planc2r;
static cData *vxfield = NULL;
static cData *vyfield = NULL;
cData *hvfield = NULL;
cData *dvfield = NULL;
static int wWidth = MAX(512, DIM);
static int wHeight = MAX(512, DIM);
static int clicked = 0;
static int fpsCount = 0;
static int fpsLimit = 1;
StopWatchInterface *timer = NULL;
int gui_mode; // For X window
// Rotate & translate variable temp., will remove and use shaders.
float rotate_x = 0.0, rotate_y = 0.0;
float translate_z = -3.0;
// Particle data
GLuint vbo = 0,vao = 0; // OpenGLES vertex buffer object
GLuint m_texture = 0;
struct cudaGraphicsResource *cuda_vbo_resource; // handles OpenGLES-CUDA exchange
static cData *particles = NULL; // particle positions in host memory
static int lastx = 0, lasty = 0;
// Texture pitch
size_t tPitch = 0; // Now this is compatible with gcc in 64-bit
char *ref_file = NULL;
bool g_bQAAddTestForce = true;
int g_iFrameToCompare = 100;
int g_TotalErrors = 0;
bool g_bExitESC = false;
const unsigned int window_width = 512;
const unsigned int window_height = 512;
// CheckFBO/BackBuffer class objects
CheckRender *g_CheckRender = NULL;
void autoTest(char **);
void displayFrame();
void keyboard(unsigned char key, int x, int y, int argc, char **argv);
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r);
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx, int dy, float dt);
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt, float visc);
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx, int dy);
extern "C" void advectParticles(GLuint vbo, cData *v, int dx, int dy, float dt);
void simulateFluids(void)
{
// simulate fluid
advectVelocity(dvfield, (float *)vxfield, (float *)vyfield, DIM, RPADW, DIM, DT);
diffuseProject(vxfield, vyfield, CPADW, DIM, DT, VIS);
updateVelocity(dvfield, (float *)vxfield, (float *)vyfield, DIM, RPADW, DIM);
advectParticles(vbo, dvfield, DIM, DIM, DT);
}
GLuint mesh_shader = 0;
void mat_identity(matrix4 m)
{
m[0][1] = m[0][2] = m[0][3] = m[1][0] = m[1][2] = m[1][3] = m[2][0] =
m[2][1] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;
}
void mat_multiply(matrix4 m0, matrix4 m1)
{
float m[4];
for(int r = 0; r < 4; r++)
{
m[0] = m[1] = m[2] = m[3] = 0.0f;
for(int c = 0; c < 4; c++)
{
for(int i = 0; i < 4; i++)
{
m[c] += m0[i][r] * m1[c][i];
}
}
for(int c = 0; c < 4; c++)
{
m0[c][r] = m[c];
}
}
}
void mat4f_Ortho(float left, float right, float bottom, float top, float near, float far, matrix4 m)
{
float r_l = right - left;
float t_b = top - bottom;
float f_n = far - near;
float tx = - (right + left) / (right - left);
float ty = - (top + bottom) / (top - bottom);
float tz = - (far + near) / (far - near);
matrix4 m2;
m2[0][0] = 2.0f/ r_l;
m2[0][1] = 0.0f;
m2[0][2] = 0.0f;
m2[0][3] = 0.0f;
m2[1][0] = 0.0f;
m2[1][1] = 2.0f / t_b;
m2[1][2] = 0.0f;
m2[1][3] = 0.0f;
m2[2][0] = 0.0f;
m2[2][1] = 0.0f;
m2[2][2] = -2.0f / f_n;
m2[2][3] = 0.0f;
m2[3][0] = tx;
m2[3][1] = ty;
m2[3][2] = tz;
m2[3][3] = 1.0f;
mat_multiply(m, m2);
}
void readAndCompileShaderFromGLSLFile(GLuint new_shaderprogram, const char *filename, GLenum shaderType)
{
FILE *file = fopen(filename,"rb"); // open shader text file
if (!file)
error_exit("Filename %s does not exist\n", filename);
/* get the size of the file and read it */
fseek(file,0,SEEK_END);
GLint size = ftell(file);
char *data = (char*)malloc(sizeof(char)*(size + 1));
memset(data, 0, sizeof(char)*(size + 1));
fseek(file,0,SEEK_SET);
size_t res = fread(data,1,size,file);
fclose(file);
GLuint shader = glCreateShader(shaderType);
glShaderSource(shader, 1, (const GLchar**)&data, &size);
glCompileShader(shader);
GET_GLERROR(0);
GLint compile_success = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_success);
GET_GLERROR(0);
if (compile_success == GL_FALSE)
{
printf("Compilation of %s failed!\n Reason:\n", filename);
GLint maxLength = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
char errorLog[maxLength];
glGetShaderInfoLog(shader, maxLength, &maxLength, &errorLog[0]);
printf("%s", errorLog);
glDeleteShader(shader);
exit(1);
}
glAttachShader(new_shaderprogram, shader);
free(data);
}
GLuint ShaderCreate(const char *vshader_filename, const char *fshader_filename)
{
printf("Loading GLSL shaders %s %s\n", vshader_filename, fshader_filename);
GLuint new_shaderprogram = glCreateProgram();
GET_GLERROR(0);
if (vshader_filename)
readAndCompileShaderFromGLSLFile(new_shaderprogram, vshader_filename, GL_VERTEX_SHADER);
GET_GLERROR(0);
if (fshader_filename)
readAndCompileShaderFromGLSLFile(new_shaderprogram, fshader_filename, GL_FRAGMENT_SHADER);
GET_GLERROR(0);
glLinkProgram(new_shaderprogram);
GET_GLERROR(0);
GLint link_success;
glGetProgramiv(new_shaderprogram, GL_LINK_STATUS, &link_success);
if (link_success == GL_FALSE)
{
printf("Linking of %s with %s failed!\n Reason:\n", vshader_filename, fshader_filename);
GLint maxLength = 0;
glGetShaderiv(new_shaderprogram, GL_INFO_LOG_LENGTH, &maxLength);
char errorLog[maxLength];
glGetShaderInfoLog(new_shaderprogram, maxLength, &maxLength, &errorLog[0]);
printf("%s", errorLog);
exit(EXIT_FAILURE);
}
return new_shaderprogram;
}
void motion(int x, int y)
{
// Convert motion coordinates to domain
float fx = (lastx / (float)wWidth);
float fy = (lasty / (float)wHeight);
int nx = (int)(fx * DIM);
int ny = (int)(fy * DIM);
if (clicked && nx < DIM-FR && nx > FR-1 && ny < DIM-FR && ny > FR-1)
{
int ddx = x - lastx;
int ddy = y - lasty;
fx = ddx / (float)wWidth;
fy = ddy / (float)wHeight;
int spy = ny-FR;
int spx = nx-FR;
addForces(dvfield, DIM, DIM, spx, spy, FORCE * DT * fx, FORCE * DT * fy, FR);
lastx = x;
lasty = y;
}
}
//===========================================================================
// InitGraphicsState() - initialize OpenGLES
//===========================================================================
static void InitGraphicsState(int argc, char** argv)
{
char *GL_version = (char *)glGetString(GL_VERSION);
char *GL_vendor = (char *)glGetString(GL_VENDOR);
char *GL_renderer = (char *)glGetString(GL_RENDERER);
printf("Version: %s\n", GL_version);
printf("Vendor: %s\n", GL_vendor);
printf("Renderer: %s\n", GL_renderer);
// Allocate and initialize host data
GLint bsize;
// initialize buffer object
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(cData) * DS, particles, GL_DYNAMIC_DRAW);
glGetBufferParameteriv(GL_ARRAY_BUFFER, GL_BUFFER_SIZE, &bsize);
if (bsize != (sizeof(cData) * DS))
{
printf("Failed to initialize GL extensions.\n");
exit(EXIT_FAILURE);
}
checkCudaErrors(cudaGraphicsGLRegisterBuffer(&cuda_vbo_resource, vbo, cudaGraphicsMapFlagsNone));
// GLSL stuff
char *vertex_shader_path = sdkFindFilePath("mesh.vert.glsl", argv[0]);
char *fragment_shader_path = sdkFindFilePath("mesh.frag.glsl", argv[0]);
if (vertex_shader_path == NULL || fragment_shader_path == NULL)
{
printf("Error finding shader file\n");
exit(EXIT_FAILURE);
}
mesh_shader = ShaderCreate(vertex_shader_path, fragment_shader_path);
GET_GLERROR(0);
free(vertex_shader_path);
free(fragment_shader_path);
glUseProgram(mesh_shader);
}
void displayFrame(void)
{
if (!ref_file)
{
sdkStartTimer(&timer);
simulateFluids();
}
GLint view_arr[4];
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask(GL_FALSE);
glUseProgram(mesh_shader);
// Set modelview and projection matricies
GLint h_ModelViewMatrix = glGetUniformLocation(mesh_shader, "modelview");
GLint h_ProjectionMatrix = glGetUniformLocation(mesh_shader, "projection");
matrix4 modelview;
matrix4 projection;
mat_identity(modelview);
mat_identity(projection);
// (float left, float right, float bottom, float top, float near, float far, matrix4 m)
mat4f_Ortho(0.0, 1.0, 1.0, 0.0, 0.0, 1.0, projection);
glUniformMatrix4fv(h_ModelViewMatrix, 1, GL_FALSE, (GLfloat*)modelview);
glUniformMatrix4fv(h_ProjectionMatrix, 1, GL_FALSE, (GLfloat*)projection);
// Set position coords
GLint h_position = glGetAttribLocation(mesh_shader, "a_position");
glEnableVertexAttribArray(h_position);
glVertexAttribPointer(h_position, 2, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glDrawArrays(GL_POINTS, 0, DS*sizeof(cData));
glDisableVertexAttribArray(h_position);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
if (ref_file)
{
return;
}
glUseProgram(0);
// Finish timing before swap buffers to avoid refresh sync
sdkStopTimer(&timer);
graphics_swap_buffers();
fpsCount++;
if (fpsCount == fpsLimit)
{
char fps[256];
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
sprintf(fps, "Cuda/GL Stable Fluids (%d x %d): %3.1f fps", DIM, DIM, ifps);
graphics_set_windowtitle(fps);
fpsCount = 0;
fpsLimit = (int)MAX(ifps, 1.f);
sdkResetTimer(&timer);
}
}
void autoTest(char **argv)
{
CFrameBufferObject *fbo = new CFrameBufferObject(wWidth, wHeight, 4, false, GL_TEXTURE_2D);
g_CheckRender = new CheckFBO(wWidth, wHeight, 4, fbo);
g_CheckRender->setPixelFormat(GL_RGBA);
g_CheckRender->setExecPath(argv[0]);
g_CheckRender->EnableQAReadback(true);
fbo->bindRenderPath();
for (int count=0; count<g_iFrameToCompare; count++)
{
simulateFluids();
// add in a little force so the automated testing is interesing.
if (ref_file)
{
int x = wWidth/(count+1);
int y = wHeight/(count+1);
float fx = (x / (float)wWidth);
float fy = (y / (float)wHeight);
int nx = (int)(fx * DIM);
int ny = (int)(fy * DIM);
int ddx = 35;
int ddy = 35;
fx = ddx / (float)wWidth;
fy = ddy / (float)wHeight;
int spy = ny-FR;
int spx = nx-FR;
addForces(dvfield, DIM, DIM, spx, spy, FORCE * DT * fx, FORCE * DT * fy, FR);
lastx = x;
lasty = y;
getLastCudaError("addForces kernel failed");
}
}
displayFrame();
fbo->unbindRenderPath();
// compare to offical reference image, printing PASS or FAIL.
printf("> (Frame %d) Readback BackBuffer\n", 100);
g_CheckRender->readback(wWidth, wHeight);
g_CheckRender->savePPM("fluidsGLES.ppm", true, NULL);
if (!g_CheckRender->PPMvsPPM("fluidsGLES.ppm", ref_file, MAX_EPSILON_ERROR, 0.25f))
{
g_TotalErrors++;
}
}
// Run fluids Simulation
bool runFluidsSimulation(int argc, char **argv, char *ref_file)
{
// Create the CUTIL timer
sdkCreateTimer(&timer);
if (ref_file != NULL)
{
// command line mode only - auto test
graphics_setup_window(0,0, wWidth, wHeight, sSDKname);
InitGraphicsState(argc, argv); // set up GLES stuff
autoTest(argv);
cleanup();
}
else
{
// create X11 window and set up associated OpenGL ES context
graphics_setup_window(0,0, wWidth, wHeight, sSDKname);
InitGraphicsState(argc, argv); // set up GLES stuff
glClear(GL_COLOR_BUFFER_BIT);
graphics_swap_buffers();
XEvent event;
KeySym key;
char text[255];
while (1)
{
while (XPending(display) > 0)
{
XNextEvent(display, &event);
if (event.type==Expose && event.xexpose.count==0)
{
printf("Redraw requested!\n");
}
if (event.type==KeyPress && XLookupString(&event.xkey,text,255,&key,0)==1)
{
if (text[0] == 27 || text[0] == 'q' || text[0] == 'Q')
{
keyboard(text[0], 0, 0, argc, argv);
return true;
}
if (text[0] == 114)
{
keyboard(text[0], 0, 0, argc, argv);
}
printf("You pressed the %c key!\n",text[0]);
}
if (event.type==ButtonPress)
{
lastx = event.xbutton.x;
lasty = event.xbutton.y;
clicked = !clicked;
}
if (event.type==ButtonRelease)
{
lastx = event.xbutton.x;
lasty = event.xbutton.y;
clicked = !clicked;
}
if (event.type == MotionNotify)
{
motion(event.xmotion.x, event.xmotion.y);
}
else
{
XFlush(display);
}
}
displayFrame();
usleep(1000); // need not take full CPU and GPU
}
}
return true;
}
// very simple von neumann middle-square prng. can't use rand() in -qatest
// mode because its implementation varies across platforms which makes testing
// for consistency in the important parts of this program difficult.
float myrand(void)
{
static int seed = 72191;
char sq[22];
if (ref_file)
{
seed *= seed;
sprintf(sq, "%010d", seed);
// pull the middle 5 digits out of sq
sq[8] = 0;
seed = atoi(&sq[3]);
return seed/99999.f;
}
else
{
return rand()/(float)RAND_MAX;
}
}
void initParticles(cData *p, int dx, int dy)
{
int i, j;
for (i = 0; i < dy; i++)
{
for (j = 0; j < dx; j++)
{
p[i*dx+j].x = (j+0.5f+(myrand() - 0.5f))/dx;
p[i*dx+j].y = (i+0.5f+(myrand() - 0.5f))/dy;
}
}
}
void keyboard(unsigned char key, int x, int y, int argc, char **argv)
{
switch (key)
{
case 'q':
case 'Q':
case 27:
g_bExitESC = true;
cleanup();
graphics_close_window(); // close window and destroy OpenGL ES context
return;
break;
case 'r':
printf("\nResetting\n");
memset(hvfield, 0, sizeof(cData) * DS);
cudaMemcpy(dvfield, hvfield, sizeof(cData) * DS, cudaMemcpyHostToDevice);
initParticles(particles, DIM, DIM);
checkCudaErrors(cudaGraphicsUnregisterResource(cuda_vbo_resource));
getLastCudaError("cudaGraphicsUnregisterBuffer failed");
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &vbo);
InitGraphicsState(argc, argv); // set up GLES stuff
graphics_swap_buffers();
getLastCudaError("cudaGraphicsGLRegisterBuffer failed");
break;
default:
break;
}
}
void cleanup(void)
{
checkCudaErrors(cudaGraphicsUnregisterResource(cuda_vbo_resource));
deleteTexture();
// Free all host and device resources
free(hvfield);
free(particles);
checkCudaErrors(cudaFree(dvfield));
checkCudaErrors(cudaFree(vxfield));
checkCudaErrors(cudaFree(vyfield));
checkCudaErrors(cufftDestroy(planr2c));
checkCudaErrors(cufftDestroy(planc2r));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &vbo);
sdkDeleteTimer(&timer);
}
int main(int argc, char **argv)
{
int devID;
cudaDeviceProp deviceProps;
#if defined(__linux__)
setenv ("DISPLAY", ":0", 0);
#endif
printf("%s Starting...\n\n", sSDKname);
printf("NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.\n\n");
#if defined (__aarch64__) || defined(__arm__)
// find iGPU on the system which is compute capable which will perform GLES-CUDA interop
devID = findIntegratedGPU();
#else
// use command-line specified CUDA device, otherwise use device with highest Gflops/s
devID = findCudaDevice(argc, (const char **)argv);
#endif
// get number of SMs on this GPU
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
printf("CUDA device [%s] has %d Multi-Processors\n",
deviceProps.name, deviceProps.multiProcessorCount);
// automated build testing harness
if (checkCmdLineFlag(argc, (const char **)argv, "file"))
{
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
}
sdkCreateTimer(&timer);
sdkResetTimer(&timer);
hvfield = (cData *)malloc(sizeof(cData) * DS);
memset(hvfield, 0, sizeof(cData) * DS);
// Allocate and initialize device data
checkCudaErrors(cudaMallocPitch((void **)&dvfield, &tPitch, sizeof(cData)*DIM, DIM));
checkCudaErrors(cudaMemcpy(dvfield, hvfield, sizeof(cData) * DS, cudaMemcpyHostToDevice));
// Temporary complex velocity field data
checkCudaErrors(cudaMalloc((void **)&vxfield, sizeof(cData) * PDS));
checkCudaErrors(cudaMalloc((void **)&vyfield, sizeof(cData) * PDS));
setupTexture(DIM, DIM);
// Create particle array
particles = (cData *)malloc(sizeof(cData) * DS);
memset(particles, 0, sizeof(cData) * DS);
initParticles(particles, DIM, DIM);
// Create CUFFT transform plan configuration
checkCudaErrors(cufftPlan2d(&planr2c, DIM, DIM, CUFFT_R2C));
checkCudaErrors(cufftPlan2d(&planc2r, DIM, DIM, CUFFT_C2R));
runFluidsSimulation(argc, argv, ref_file);
if (ref_file)
{
printf("[fluidsGLES] - Test Results: %d Failures\n", g_TotalErrors);
exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}
sdkDeleteTimer(&timer);
if (!ref_file)
{
exit(EXIT_SUCCESS);
}
return 0;
}