cuda-samples/Samples/cannyEdgeDetectorNPP/cannyEdgeDetectorNPP.cpp
Alec Woods 1f571da4f5
Avoid double free in cannyEdgeDetectorNPP.cpp
The device memory for the image will be automatically freed when the image object itself is destroyed.
2020-11-01 11:15:12 -05:00

228 lines
7.6 KiB
C++

/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define WINDOWS_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#pragma warning(disable : 4819)
#endif
#include <Exceptions.h>
#include <ImageIO.h>
#include <ImagesCPU.h>
#include <ImagesNPP.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <helper_cuda.h>
#include <helper_string.h>
inline int cudaDeviceInit(int argc, const char **argv) {
int deviceCount;
checkCudaErrors(cudaGetDeviceCount(&deviceCount));
if (deviceCount == 0) {
std::cerr << "CUDA error: no devices supporting CUDA." << std::endl;
exit(EXIT_FAILURE);
}
int dev = findCudaDevice(argc, argv);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
std::cerr << "cudaSetDevice GPU" << dev << " = " << deviceProp.name
<< std::endl;
checkCudaErrors(cudaSetDevice(dev));
return dev;
}
bool printfNPPinfo(int argc, char *argv[]) {
const NppLibraryVersion *libVer = nppGetLibVersion();
printf("NPP Library Version %d.%d.%d\n", libVer->major, libVer->minor,
libVer->build);
int driverVersion, runtimeVersion;
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version: %d.%d\n", driverVersion / 1000,
(driverVersion % 100) / 10);
printf(" CUDA Runtime Version: %d.%d\n", runtimeVersion / 1000,
(runtimeVersion % 100) / 10);
// Min spec is SM 1.0 devices
bool bVal = checkCudaCapabilities(1, 0);
return bVal;
}
int main(int argc, char *argv[]) {
printf("%s Starting...\n\n", argv[0]);
try {
std::string sFilename;
char *filePath;
cudaDeviceInit(argc, (const char **)argv);
if (printfNPPinfo(argc, argv) == false) {
exit(EXIT_SUCCESS);
}
if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
getCmdLineArgumentString(argc, (const char **)argv, "input", &filePath);
} else {
filePath = sdkFindFilePath("Lena.pgm", argv[0]);
}
if (filePath) {
sFilename = filePath;
} else {
sFilename = "Lena.pgm";
}
// if we specify the filename at the command line, then we only test
// sFilename[0].
int file_errors = 0;
std::ifstream infile(sFilename.data(), std::ifstream::in);
if (infile.good()) {
std::cout << "cannyEdgeDetectionNPP opened: <" << sFilename.data()
<< "> successfully!" << std::endl;
file_errors = 0;
infile.close();
} else {
std::cout << "cannyEdgeDetectionNPP unable to open: <" << sFilename.data()
<< ">" << std::endl;
file_errors++;
infile.close();
}
if (file_errors > 0) {
exit(EXIT_FAILURE);
}
std::string sResultFilename = sFilename;
std::string::size_type dot = sResultFilename.rfind('.');
if (dot != std::string::npos) {
sResultFilename = sResultFilename.substr(0, dot);
}
sResultFilename += "_cannyEdgeDetection.pgm";
if (checkCmdLineFlag(argc, (const char **)argv, "output")) {
char *outputFilePath;
getCmdLineArgumentString(argc, (const char **)argv, "output",
&outputFilePath);
sResultFilename = outputFilePath;
}
// declare a host image object for an 8-bit grayscale image
npp::ImageCPU_8u_C1 oHostSrc;
// load gray-scale image from disk
npp::loadImage(sFilename, oHostSrc);
// declare a device image and copy construct from the host image,
// i.e. upload host to device
npp::ImageNPP_8u_C1 oDeviceSrc(oHostSrc);
NppiSize oSrcSize = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
NppiPoint oSrcOffset = {0, 0};
// create struct with ROI size
NppiSize oSizeROI = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
// allocate device image of appropriately reduced size
npp::ImageNPP_8u_C1 oDeviceDst(oSizeROI.width, oSizeROI.height);
int nBufferSize = 0;
Npp8u *pScratchBufferNPP = 0;
// get necessary scratch buffer size and allocate that much device memory
NPP_CHECK_NPP(nppiFilterCannyBorderGetBufferSize(oSizeROI, &nBufferSize));
cudaMalloc((void **)&pScratchBufferNPP, nBufferSize);
// now run the canny edge detection filter
// Using nppiNormL2 will produce larger magnitude values allowing for finer
// control of threshold values while nppiNormL1 will be slightly faster.
// Also, selecting the sobel gradient filter allows up to a 5x5 kernel size
// which can produce more precise results but is a bit slower. Commonly
// nppiNormL2 and sobel gradient filter size of 3x3 are used. Canny
// recommends that the high threshold value should be about 3 times the low
// threshold value. The threshold range will depend on the range of
// magnitude values that the sobel gradient filter generates for a
// particular image.
Npp16s nLowThreshold = 72;
Npp16s nHighThreshold = 256;
if ((nBufferSize > 0) && (pScratchBufferNPP != 0)) {
NPP_CHECK_NPP(nppiFilterCannyBorder_8u_C1R(
oDeviceSrc.data(), oDeviceSrc.pitch(), oSrcSize, oSrcOffset,
oDeviceDst.data(), oDeviceDst.pitch(), oSizeROI, NPP_FILTER_SOBEL,
NPP_MASK_SIZE_3_X_3, nLowThreshold, nHighThreshold, nppiNormL2,
NPP_BORDER_REPLICATE, pScratchBufferNPP));
}
// free scratch buffer memory
cudaFree(pScratchBufferNPP);
// declare a host image for the result
npp::ImageCPU_8u_C1 oHostDst(oDeviceDst.size());
// and copy the device result data into it
oDeviceDst.copyTo(oHostDst.data(), oHostDst.pitch());
saveImage(sResultFilename, oHostDst);
std::cout << "Saved image: " << sResultFilename << std::endl;
exit(EXIT_SUCCESS);
} catch (npp::Exception &rException) {
std::cerr << "Program error! The following exception occurred: \n";
std::cerr << rException << std::endl;
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
} catch (...) {
std::cerr << "Program error! An unknow type of exception occurred. \n";
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
return -1;
}
return 0;
}