mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:25:47 +08:00
163 lines
5.5 KiB
Plaintext
163 lines
5.5 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// System includes.
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
|
|
// STL.
|
|
#include <vector>
|
|
|
|
// CUDA runtime.
|
|
#include <cuda_runtime.h>
|
|
|
|
// Helper functions and utilities to work with CUDA.
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
// Device library includes.
|
|
#include "simpleDeviceLibrary.cuh"
|
|
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
using std::vector;
|
|
|
|
#define EPS 1e-5
|
|
|
|
typedef unsigned int uint;
|
|
typedef float (*deviceFunc)(float);
|
|
|
|
const char *sampleName = "simpleSeparateCompilation";
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Auto-Verification Code
|
|
bool testResult = true;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Static device pointers to __device__ functions.
|
|
__device__ deviceFunc dMultiplyByTwoPtr = multiplyByTwo;
|
|
__device__ deviceFunc dDivideByTwoPtr = divideByTwo;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Kernels
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Transforms vector.
|
|
//! Applies the __device__ function "f" to each element of the vector "v".
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__global__ void transformVector(float *v, deviceFunc f, uint size) {
|
|
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (tid < size) {
|
|
v[tid] = (*f)(v[tid]);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Declaration, forward
|
|
void runTest(int argc, const char **argv);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
cout << sampleName << " starting..." << endl;
|
|
|
|
runTest(argc, (const char **)argv);
|
|
|
|
cout << sampleName << " completed, returned " << (testResult ? "OK" : "ERROR")
|
|
<< endl;
|
|
|
|
exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
void runTest(int argc, const char **argv) {
|
|
try {
|
|
// This will pick the best possible CUDA capable device.
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
// Create host vector.
|
|
const uint kVectorSize = 1000;
|
|
|
|
vector<float> hVector(kVectorSize);
|
|
|
|
for (uint i = 0; i < kVectorSize; ++i) {
|
|
hVector[i] = rand() / static_cast<float>(RAND_MAX);
|
|
}
|
|
|
|
// Create and populate device vector.
|
|
float *dVector;
|
|
checkCudaErrors(cudaMalloc(&dVector, kVectorSize * sizeof(float)));
|
|
|
|
checkCudaErrors(cudaMemcpy(dVector, &hVector[0],
|
|
kVectorSize * sizeof(float),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
// Kernel configuration, where a one-dimensional
|
|
// grid and one-dimensional blocks are configured.
|
|
const int nThreads = 1024;
|
|
const int nBlocks = 1;
|
|
|
|
dim3 dimGrid(nBlocks);
|
|
dim3 dimBlock(nThreads);
|
|
|
|
// Test library functions.
|
|
deviceFunc hFunctionPtr;
|
|
|
|
cudaMemcpyFromSymbol(&hFunctionPtr, dMultiplyByTwoPtr, sizeof(deviceFunc));
|
|
transformVector<<<dimGrid, dimBlock>>>(dVector, hFunctionPtr, kVectorSize);
|
|
checkCudaErrors(cudaGetLastError());
|
|
|
|
cudaMemcpyFromSymbol(&hFunctionPtr, dDivideByTwoPtr, sizeof(deviceFunc));
|
|
transformVector<<<dimGrid, dimBlock>>>(dVector, hFunctionPtr, kVectorSize);
|
|
checkCudaErrors(cudaGetLastError());
|
|
|
|
// Download results.
|
|
vector<float> hResultVector(kVectorSize);
|
|
|
|
checkCudaErrors(cudaMemcpy(&hResultVector[0], dVector,
|
|
kVectorSize * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
// Check results.
|
|
for (int i = 0; i < kVectorSize; ++i) {
|
|
if (fabs(hVector[i] - hResultVector[i]) > EPS) {
|
|
cout << "Computations were incorrect..." << endl;
|
|
testResult = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Free resources.
|
|
if (dVector) checkCudaErrors(cudaFree(dVector));
|
|
} catch (...) {
|
|
cout << "Error occured, exiting..." << endl;
|
|
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|