cuda-samples/Samples/cudaTensorCoreGemm/cudaTensorCoreGemm.cu
2019-01-23 01:34:43 +05:30

654 lines
24 KiB
Plaintext

/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// CUDA sample demonstrating a GEMM computation using the Warp Matrix Multiply
// and Accumulate API introduced in CUDA 9.
// In this program, the compute_gemm kernel computes the result of a matrix
// multiplication and addition: D = alpha * A * B + beta * C. The dimensions of
// both C and D matrices are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x
// K_GLOBAL (row-major), the B matrix is K_GLOBAL x N_GLOBAL (column-major). In
// that kernel, each CTA computes one 128 x 128 tile of the resulting matrix per
// iteration. When the tile is computed, the CTA stores it to the global memory
// and begins a new iteration, selecting a new 128 x 128 tile to compute.
// Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes
// eight 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array. Warps
// compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by
// moving through the K_GLOBAL dimension of the A and B matrices and
// accumulating the intermediate result in the local thread state.
// There are a number of simple optimizations used in the algorithm:
// - The CTA copies the 128 x 128 tile of the C matrix from the global memory to
// shared memory. After that is done, each warp loads the C matrix fragments
// from shared memory, thus avoiding a random global memory access.
// - On each internal iteration, the CTA copies a portion of the A and B
// matrices from
// global memory to shared memory. After that, all warps in the CTA reuse the
// A and B data from shared memory, thus reducing the number of data copies
// from global memory.
// - The portions of the A and B matrices are stored in shared memory with an
// additional
// padding (skew) to reduce the number of shared memory access bank conflicts.
// (See a detailed explanation near the SKEW_HALF macro definition.)
// - When the CTA finishes computing the tiles of the resulting matrix, each
// warp stores
// its subtiles to shared memory. The CTA then copies the shared memory
// contents to global memory, again avoiding redundant random global memory
// accesses.
// - Note that the CTA tile size is chosen to maximize the GPU register
// utilization,
// but carefully enough to avoid local memory use.
#include <assert.h>
#include <cuda.h>
#include <mma.h>
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
// Externally configurable parameters.
#ifndef CPU_DEBUG
// Set this to 1 to verify the correctness of the GPU-computed matrix.
#define CPU_DEBUG 0
#endif
#ifndef SHARED_MEMORY_LIMIT_64K
// Set this to 0 to use more than 64 Kb of shared memory to cache data, to
// improve the performance of the computations on GPU.
// Note that you need a GPU that can have more than 64 Kb of shared memory
// per multiprocessor.
#define SHARED_MEMORY_LIMIT_64K 1
#endif
// GPU configuration.
#define WARP_SIZE 32
// MMA matrix tile dimensions.
#define M 16
#define N 16
#define K 16
#define WMMA_M 16
#define WMMA_N 16
#define WMMA_K 16
// GEMM configuration.
#define M_TILES 256
#define N_TILES 256
#define K_TILES 256
#define M_GLOBAL (M * M_TILES)
#define N_GLOBAL (N * N_TILES)
#define K_GLOBAL (K * K_TILES)
#define C_LAYOUT wmma::mem_row_major
// Implementation constants.
#define WARPS_PER_BLOCK 8
#define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK)
#if SHARED_MEMORY_LIMIT_64K
// With only 64 Kb shared memory available, we can fit two 8-tile chunks of
// the A and B matrix data, that are 16 * 16 * 8 * 8 * 2 = 32 Kb each
// (i.e. two 8x8 arrays of tiles of 16x16 half-typed elements per CTA).
// But we cannot account the 8 Kb total skew overhead, without which the
// performance would be severely impacted. So we choose to reduce the chunk size
// in half, i.e. the amount of A and B matrix data we cache in shared memory.
// Accordingly, this doubles the number of outer iterations across the global K
// dimension, which only slightly impacts the performance.
#define CHUNK_K 4
#else
#define CHUNK_K 8
#endif
#define CHUNK_LINE_BYTES (CHUNK_K * K * sizeof(half))
#define WARP_COPY_BYTES (WARP_SIZE * sizeof(int4))
#define CHUNK_COPY_LINES_PER_WARP (WARP_COPY_BYTES / CHUNK_LINE_BYTES)
#define CHUNK_COPY_LINE_LANES (WARP_SIZE / CHUNK_COPY_LINES_PER_WARP)
#define BLOCK_ROW_WARPS 2
#define BLOCK_COL_WARPS 4
#define WARP_ROW_TILES 4
#define WARP_COL_TILES 2
#define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS)
#define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS)
#define GLOBAL_MEM_STRIDE N_GLOBAL
#define SHMEM_STRIDE (N * BLOCK_ROW_TILES)
#define SHMEM_OFFSET (N * WARP_ROW_TILES)
// The macro below is used to shift rows of the A matrix and columns of the B
// matrix in shared memory to minimize possible bank conflicts. Before
// performing the nvcuda::wmma::mma_sync operation, the warp must load the
// matrix data using the nvcuda::wmma::load_matrix_sync operation. Although the
// memory access pattern is not specified for that function, each lane in the
// warp can read one or multiple matrix elements from different matrix rows or
// columns. For shared memory, such access can result in bank conflicts if
// different rows / columns of the matrix map to the same bank. By shifting each
// row and column by a few bytes, we make sure that they map to different banks,
// thus reducing the number of possible bank conflicts. The number of 8 two-byte
// "half" elements is chosen as the minimum possible shift because we must keep
// each row and column 128-bit aligned, as required by
// nvcuda::wmma::load_matrix_sync.
#define SKEW_HALF 8
#define checkKernelErrors(expr) \
do { \
expr; \
\
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
printf("Line %d: '%s' failed: %s\n", __LINE__, #expr, \
cudaGetErrorString(__err)); \
abort(); \
} \
} while (0)
using namespace nvcuda;
__host__ void init_host_matrices(half *a, half *b, float *c) {
for (int i = 0; i < M_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
a[i * K_GLOBAL + j] = (half)(rand() % 3);
}
}
for (int i = 0; i < N_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
b[i * K_GLOBAL + j] = (half)(rand() % 3);
}
}
for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) {
c[t] = static_cast<float>(rand() % 3);
}
}
__global__ void compute_gemm(const half *A, const half *B, const float *C,
float *D, float alpha, float beta) {
extern __shared__ half shmem[][CHUNK_K * K + SKEW_HALF];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = (float *)&shmem[0][0] +
(warpId / 2) * SHMEM_STRIDE * K * 2 +
(warpId % 2) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and
// from shared memory.
float *shmem_warp_stream_ptr =
(float *)&shmem[0][0] + warpId * SHMEM_STRIDE * K;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may
// result in a loss of precision). Zero still needs to be specially handled
// though.
beta /= alpha;
// Each CTA slides along the 128 x 128 tiles from the top left corner of the
// matrix to the right and down, and selects the next tile to compute. Once
// there's no such tile, all warps in this CTA exit.
for (unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i =
((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared
// memory.
const size_t gmem_idx =
(block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < K; i++) {
typedef int4 copy_t;
*((copy_t *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) =
*((copy_t *)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) +
laneId);
}
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment
// multiplications along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES]
[WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr =
shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const half *warp_ptr = (warpId < 4) ? (&A[block_tile_i * M * K_GLOBAL] +
M * K_GLOBAL * (warpId % 4) * 2)
: (&B[block_tile_j * N * K_GLOBAL] +
N * K_GLOBAL * (warpId % 4) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy
// the B matrix.
size_t shmem_idx =
warpId < (WARPS_PER_BLOCK / 2)
? (M * (warpId % (WARPS_PER_BLOCK / 2)) * 2)
: (N * (warpId % (WARPS_PER_BLOCK / 2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
int4 *lane_ptr = (int4 *)(warp_ptr + tile_k * K +
(laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL) +
(laneId % CHUNK_COPY_LINE_LANES);
// Shift the second half of the warp to the next row / column in the
// shared memory.
shmem_idx += laneId / CHUNK_COPY_LINE_LANES;
#pragma unroll
for (int i = 0; i < ((WARP_SIZE / 2) / CHUNK_COPY_LINES_PER_WARP) * 2;
i++) {
// Copy 16 bytes at once in each lane.
*((int4 *)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)) =
*lane_ptr;
// Advance the global memory pointer and the shared memory index.
lane_ptr =
(int4 *)((half *)lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP);
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major>
a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major>
b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId / 2) * M * 2 + (i * M);
const half *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_HALF);
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be
// reused against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off +
(WARP_ROW_TILES * N) * (warpId % 2) +
(j * N);
const half *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_HALF);
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL
// threads in the warp are well-defined even though element indices
// within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++) c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global
// memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < K; i++) {
*((int4 *)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((int4 *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
}
// Performs an MxNxK GEMM (C=alpha*A*B + beta*C) assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16.
// 3) Neither A nor B are transposed.
// Note: This is a less performant version of the compute_gemm kernel. It is
// designed for
// demonstration purposes only to show the CUDA WMMA API use without
// relying on availability of the shared memory.
__global__ void simple_wmma_gemm(half *a, half *b, float *c, float *d, int m_ld,
int n_ld, int k_ld, float alpha, float beta) {
// Leading dimensions. Packed with no transpositions.
int lda = m_ld;
int ldb = k_ld;
int ldc = n_ld;
// Tile using a 2D grid
int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
// Declare the fragments
wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major>
a_frag;
wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major>
b_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Loop over k
for (int i = 0; i < k_ld; i += WMMA_K) {
int aCol = i;
int aRow = warpM * WMMA_M;
int bCol = i;
int bRow = warpN * WMMA_N;
// Bounds checking
if (aRow < m_ld && aCol < k_ld && bRow < k_ld && bCol < n_ld) {
// Load the inputs
wmma::load_matrix_sync(a_frag, a + aCol + aRow * lda, lda);
wmma::load_matrix_sync(b_frag, b + bCol + bRow * ldb, ldb);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
}
}
// Load in the current value of c, scale it by beta, and add this our result
// scaled by alpha
int cCol = warpN * WMMA_N;
int cRow = warpM * WMMA_M;
if (cRow < m_ld && cCol < n_ld) {
wmma::load_matrix_sync(c_frag, c + cCol + cRow * ldc, ldc,
wmma::mem_row_major);
for (int i = 0; i < c_frag.num_elements; i++) {
c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(d + cCol + cRow * ldc, c_frag, ldc,
wmma::mem_row_major);
}
}
__host__ void matMultiplyOnHost(half *A, half *B, float *C, float alpha,
float beta, int numARows, int numAColumns,
int numBRows, int numBColumns, int numCRows,
int numCColumns) {
for (int i = 0; i < numCRows; i++) {
for (int j = 0; j < numCColumns; j++) {
float temp = 0.0;
for (int k = 0; k < numAColumns; k++) {
temp += (float)A[i * numAColumns + k] * (float)B[j * numBRows + k];
}
C[i * numCColumns + j] = temp * alpha + beta * C[i * numCColumns + j];
}
}
}
int main(int argc, char **argv) {
printf("Initializing...\n");
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
// Tensor cores require a GPU of Volta (SM7X) architecture or higher.
if (deviceProp.major < 7) {
printf(
"cudaTensorCoreGemm requires SM 7.0 or higher to use Tensor "
"Cores. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES);
printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES);
printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES);
half *A_h = NULL;
half *B_h = NULL;
float *C_h = NULL;
#if CPU_DEBUG
float *result_hD = NULL;
float *result_host = NULL;
#endif
A_h = (half *)malloc(sizeof(half) * M_GLOBAL * K_GLOBAL);
B_h = (half *)malloc(sizeof(half) * K_GLOBAL * N_GLOBAL);
C_h = (float *)malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#if CPU_DEBUG
result_hD = (float *)malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
result_host = (float *)malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#endif
half *A = NULL;
half *B = NULL;
float *C = NULL;
float *D = NULL;
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&A),
sizeof(half) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&B),
sizeof(half) * N_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&C),
sizeof(float) * M_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&D),
sizeof(float) * M_GLOBAL * N_GLOBAL));
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
init_host_matrices(A_h, B_h, C_h);
printf("Preparing data for GPU...\n");
checkCudaErrors(cudaMemcpy(A, A_h, sizeof(half) * M_GLOBAL * K_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(B, B_h, sizeof(half) * N_GLOBAL * K_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(C, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemset(D, 0, sizeof(float) * M_GLOBAL * N_GLOBAL));
enum {
// Compute the right amount of shared memory to request.
// We need shared memory to hold per-CTA C and D matrix tiles, and to cache
// per-CTA chunks
// of the A and B matrices. Therefore, the right amount to request is the
// maximum of those
// two numbers.
SHMEM_SZ = MAX(
sizeof(half) * (BLOCK_COL_TILES * M) * (CHUNK_K * K + SKEW_HALF) * 2,
M * (BLOCK_ROW_WARPS * WARP_ROW_TILES) * N *
(BLOCK_COL_WARPS * WARP_COL_TILES) * sizeof(float))
};
printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL);
const float alpha = 1.1f;
const float beta = 1.2f;
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
// If enough shared memory available on the GPU use high performant kernel
if (deviceProp.sharedMemPerMultiprocessor >= SHMEM_SZ) {
printf("Computing... using high performance kernel compute_gemm \n");
checkCudaErrors(cudaFuncSetAttribute(
compute_gemm, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
checkKernelErrors(
(compute_gemm<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D,
sizeof(float) * M_GLOBAL * N_GLOBAL,
cudaMemcpyDeviceToHost));
#endif
} else {
dim3 gridDim;
dim3 blockDim;
// blockDim.x must be a multple of warpSize
// 128x4 means we have 16 warps and a block computes a 64x64 output tile
blockDim.x = 128;
blockDim.y = 4;
gridDim.x = (M_GLOBAL + (WMMA_M * blockDim.x / 32 - 1)) /
(WMMA_M * blockDim.x / 32);
gridDim.y = (N_GLOBAL + WMMA_N * blockDim.y - 1) / (WMMA_N * blockDim.y);
printf("Computing... using simple_wmma_gemm kernel\n");
simple_wmma_gemm<<<gridDim, blockDim>>>(A, B, C, D, M_GLOBAL, N_GLOBAL,
K_GLOBAL, alpha, beta);
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D,
sizeof(float) * M_GLOBAL * N_GLOBAL,
cudaMemcpyDeviceToHost));
#endif
}
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
#if CPU_DEBUG
printf("Verifying correctness of the computations...\n");
memcpy(result_host, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL);
matMultiplyOnHost(A_h, B_h, result_host, alpha, beta, M_GLOBAL, K_GLOBAL,
K_GLOBAL, N_GLOBAL, M_GLOBAL, N_GLOBAL);
for (int i = 0; i < N_GLOBAL * M_GLOBAL; i++) {
if (fabs(result_hD[i] - result_host[i]) > 0.1f)
printf("mismatch i=%d result_hD=%f result_host=%f\n", i, result_hD[i],
result_host[i]);
}
free(result_hD);
free(result_host);
#endif
float milliseconds = 0;
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop));
printf("Time: %f ms\n", milliseconds);
printf("TFLOPS: %.2f\n", static_cast<double>((static_cast<double>(M_GLOBAL) *
N_GLOBAL * K_GLOBAL * 2) /
(milliseconds / 1000.)) /
1e12);
free(A_h);
free(B_h);
free(C_h);
checkCudaErrors(cudaFree(reinterpret_cast<void *>(A)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(B)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(C)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(D)));
return 0;
}