mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:15:55 +08:00
425 lines
15 KiB
Plaintext
425 lines
15 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample implements a conjugate gradient solver on GPU
|
|
* using CUBLAS and CUSPARSE with CUDA Graphs
|
|
*
|
|
*/
|
|
|
|
// includes, system
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Using updated (v2) interfaces to cublas */
|
|
#include <cublas_v2.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cusparse.h>
|
|
|
|
// Utilities and system includes
|
|
#include <helper_cuda.h> // helper function CUDA error checking and initialization
|
|
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
|
|
|
|
const char *sSDKname = "conjugateGradientCudaGraphs";
|
|
|
|
#ifndef WITH_GRAPH
|
|
#define WITH_GRAPH 1
|
|
#endif
|
|
|
|
/* genTridiag: generate a random tridiagonal symmetric matrix */
|
|
void genTridiag(int *I, int *J, float *val, int N, int nz) {
|
|
I[0] = 0, J[0] = 0, J[1] = 1;
|
|
val[0] = (float)rand() / RAND_MAX + 10.0f;
|
|
val[1] = (float)rand() / RAND_MAX;
|
|
int start;
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
if (i > 1) {
|
|
I[i] = I[i - 1] + 3;
|
|
} else {
|
|
I[1] = 2;
|
|
}
|
|
|
|
start = (i - 1) * 3 + 2;
|
|
J[start] = i - 1;
|
|
J[start + 1] = i;
|
|
|
|
if (i < N - 1) {
|
|
J[start + 2] = i + 1;
|
|
}
|
|
|
|
val[start] = val[start - 1];
|
|
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
|
|
|
|
if (i < N - 1) {
|
|
val[start + 2] = (float)rand() / RAND_MAX;
|
|
}
|
|
}
|
|
|
|
I[N] = nz;
|
|
}
|
|
|
|
__global__ void initVectors(float *rhs, float *x, int N) {
|
|
size_t gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (size_t i = gid; i < N; i += gridDim.x * blockDim.x) {
|
|
rhs[i] = 1.0;
|
|
x[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
__global__ void r1_div_x(float *r1, float *r0, float *b) {
|
|
int gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (gid == 0) {
|
|
b[0] = r1[0] / r0[0];
|
|
}
|
|
}
|
|
|
|
__global__ void a_minus(float *a, float *na) {
|
|
int gid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (gid == 0) {
|
|
na[0] = -(a[0]);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int N = 0, nz = 0, *I = NULL, *J = NULL;
|
|
float *val = NULL;
|
|
const float tol = 1e-5f;
|
|
const int max_iter = 10000;
|
|
float *x;
|
|
float *rhs;
|
|
float r1;
|
|
|
|
int *d_col, *d_row;
|
|
float *d_val, *d_x;
|
|
float *d_r, *d_p, *d_Ax;
|
|
int k;
|
|
float alpha, beta, alpham1;
|
|
|
|
cudaStream_t stream1, streamForGraph;
|
|
|
|
// This will pick the best possible CUDA capable device
|
|
cudaDeviceProp deviceProp;
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (devID < 0) {
|
|
printf("exiting...\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
|
|
|
|
// Statistics about the GPU device
|
|
printf(
|
|
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
|
|
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
|
|
|
|
/* Generate a random tridiagonal symmetric matrix in CSR format */
|
|
N = 1048576;
|
|
nz = (N - 2) * 3 + 4;
|
|
checkCudaErrors(cudaMallocHost(&I, sizeof(int) * (N + 1)));
|
|
checkCudaErrors(cudaMallocHost(&J, sizeof(int) * nz));
|
|
checkCudaErrors(cudaMallocHost(&val, sizeof(float) * nz));
|
|
genTridiag(I, J, val, N, nz);
|
|
|
|
checkCudaErrors(cudaMallocHost(&x, sizeof(float) * N));
|
|
rhs = (float *)malloc(sizeof(float) * N);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rhs[i] = 1.0;
|
|
x[i] = 0.0;
|
|
}
|
|
|
|
/* Get handle to the CUBLAS context */
|
|
cublasHandle_t cublasHandle = 0;
|
|
cublasStatus_t cublasStatus;
|
|
cublasStatus = cublasCreate(&cublasHandle);
|
|
|
|
checkCudaErrors(cublasStatus);
|
|
|
|
/* Get handle to the CUSPARSE context */
|
|
cusparseHandle_t cusparseHandle = 0;
|
|
cusparseStatus_t cusparseStatus;
|
|
cusparseStatus = cusparseCreate(&cusparseHandle);
|
|
|
|
checkCudaErrors(cusparseStatus);
|
|
|
|
checkCudaErrors(cudaStreamCreate(&stream1));
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float)));
|
|
|
|
float *d_r1, *d_r0, *d_dot, *d_a, *d_na, *d_b;
|
|
checkCudaErrors(cudaMalloc((void **)&d_r1, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r0, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_dot, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_a, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_na, sizeof(float)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(float)));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
checkCudaErrors(cusparseCreateCsr(&matA, N, N, nz, d_row, d_col, d_val,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, N, d_x, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecp = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecp, N, d_p, CUDA_R_32F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, N, d_Ax, CUDA_R_32F));
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
|
|
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
cusparseMatDescr_t descr = 0;
|
|
checkCudaErrors(cusparseCreateMatDescr(&descr));
|
|
|
|
checkCudaErrors(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
checkCudaErrors(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
|
|
|
|
int numBlocks = 0, blockSize = 0;
|
|
checkCudaErrors(
|
|
cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, initVectors));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_col, J, nz * sizeof(int),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
checkCudaErrors(cudaMemcpyAsync(d_row, I, (N + 1) * sizeof(int),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
checkCudaErrors(cudaMemcpyAsync(d_val, val, nz * sizeof(float),
|
|
cudaMemcpyHostToDevice, stream1));
|
|
|
|
initVectors<<<numBlocks, blockSize, 0, stream1>>>(d_r, d_x, N);
|
|
|
|
alpha = 1.0;
|
|
alpham1 = -1.0;
|
|
beta = 0.0;
|
|
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&alpha, matA, vecx, &beta, vecAx, CUDA_R_32F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE));
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
|
|
k = 1;
|
|
// First Iteration when k=1 starts
|
|
checkCudaErrors(cublasScopy(cublasHandle, N, d_r, 1, d_p, 1));
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&alpha, matA, vecp, &beta, vecAx, CUDA_R_32F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
|
|
// First Iteration when k=1 ends
|
|
k++;
|
|
|
|
#if WITH_GRAPH
|
|
cudaGraph_t initGraph;
|
|
checkCudaErrors(cudaStreamCreate(&streamForGraph));
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
checkCudaErrors(cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
|
|
checkCudaErrors(
|
|
cusparseSetPointerMode(cusparseHandle, CUSPARSE_POINTER_MODE_HOST));
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&alpha, matA, vecp, &beta, vecAx, CUDA_R_32F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(cudaMemsetAsync(d_dot, 0, sizeof(float), stream1));
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
checkCudaErrors(cudaMemsetAsync(d_r1, 0, sizeof(float), stream1));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
|
|
checkCudaErrors(cudaStreamEndCapture(stream1, &initGraph));
|
|
cudaGraphExec_t graphExec;
|
|
checkCudaErrors(cudaGraphInstantiate(&graphExec, initGraph, NULL, NULL, 0));
|
|
#endif
|
|
|
|
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
|
|
|
|
while (r1 > tol * tol && k <= max_iter) {
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
|
|
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
|
|
#else
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
|
|
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
|
|
|
|
checkCudaErrors(cusparseSpMV(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
|
|
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
|
|
|
|
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
|
|
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
|
|
|
|
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
|
|
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToDevice, stream1));
|
|
|
|
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
|
|
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
#endif
|
|
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
|
|
k++;
|
|
}
|
|
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
|
|
cudaMemcpyDeviceToHost, streamForGraph));
|
|
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
|
|
#else
|
|
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream1));
|
|
checkCudaErrors(cudaStreamSynchronize(stream1));
|
|
#endif
|
|
|
|
float rsum, diff, err = 0.0;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
rsum = 0.0;
|
|
|
|
for (int j = I[i]; j < I[i + 1]; j++) {
|
|
rsum += val[j] * x[J[j]];
|
|
}
|
|
|
|
diff = fabs(rsum - rhs[i]);
|
|
|
|
if (diff > err) {
|
|
err = diff;
|
|
}
|
|
}
|
|
|
|
#if WITH_GRAPH
|
|
checkCudaErrors(cudaGraphExecDestroy(graphExec));
|
|
checkCudaErrors(cudaGraphDestroy(initGraph));
|
|
checkCudaErrors(cudaStreamDestroy(streamForGraph));
|
|
#endif
|
|
checkCudaErrors(cudaStreamDestroy(stream1));
|
|
cusparseDestroy(cusparseHandle);
|
|
cublasDestroy(cublasHandle);
|
|
|
|
if (matA) {
|
|
checkCudaErrors(cusparseDestroySpMat(matA));
|
|
}
|
|
if (vecx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecx));
|
|
}
|
|
if (vecAx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecAx));
|
|
}
|
|
if (vecp) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecp));
|
|
}
|
|
|
|
checkCudaErrors(cudaFreeHost(I));
|
|
checkCudaErrors(cudaFreeHost(J));
|
|
checkCudaErrors(cudaFreeHost(val));
|
|
checkCudaErrors(cudaFreeHost(x));
|
|
free(rhs);
|
|
checkCudaErrors(cudaFree(d_col));
|
|
checkCudaErrors(cudaFree(d_row));
|
|
checkCudaErrors(cudaFree(d_val));
|
|
checkCudaErrors(cudaFree(d_x));
|
|
checkCudaErrors(cudaFree(d_r));
|
|
checkCudaErrors(cudaFree(d_p));
|
|
checkCudaErrors(cudaFree(d_Ax));
|
|
|
|
printf("Test Summary: Error amount = %f\n", err);
|
|
exit((k <= max_iter) ? 0 : 1);
|
|
}
|