cuda-samples/Samples/simpleD3D11Texture/simpleD3D11Texture.cpp
2021-10-21 16:34:49 +05:30

1247 lines
41 KiB
C++

/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This example demonstrates how to use the CUDA Direct3D bindings to
* transfer data between CUDA and DX9 2D, CubeMap, and Volume Textures.
*/
#pragma warning(disable : 4312)
#include <windows.h>
#include <mmsystem.h>
// This header inclues all the necessary D3D11 and CUDA includes
#include <dynlink_d3d11.h>
#include <cuda_runtime_api.h>
#include <cuda_d3d11_interop.h>
#include <d3dcompiler.h>
// includes, project
#include <rendercheck_d3d11.h>
#include <helper_cuda.h>
#include <helper_functions.h> // includes cuda.h and cuda_runtime_api.h
#define MAX_EPSILON 10
static char *SDK_name = "simpleD3D11Texture";
//-----------------------------------------------------------------------------
// Global variables
//-----------------------------------------------------------------------------
IDXGIAdapter *g_pCudaCapableAdapter = NULL; // Adapter to use
ID3D11Device *g_pd3dDevice = NULL; // Our rendering device
ID3D11DeviceContext *g_pd3dDeviceContext = NULL;
IDXGISwapChain *g_pSwapChain = NULL; // The swap chain of the window
ID3D11RenderTargetView *g_pSwapChainRTV =
NULL; // The Render target view on the swap chain ( used for clear)
ID3D11RasterizerState *g_pRasterState = NULL;
ID3D11InputLayout *g_pInputLayout = NULL;
#ifdef USEEFFECT
#pragma message( \
">>>> NOTE : Using Effect library (see DXSDK Utility folder for sources)")
#pragma message( \
">>>> WARNING : Currently only libs for vc9 are provided with the sample. See DXSDK for more...")
#pragma message( \
">>>> WARNING : The effect is currently failing... some strange internal error in Effect lib")
ID3DX11Effect *g_pSimpleEffect = NULL;
ID3DX11EffectTechnique *g_pSimpleTechnique = NULL;
ID3DX11EffectVectorVariable *g_pvQuadRect = NULL;
ID3DX11EffectScalarVariable *g_pUseCase = NULL;
ID3DX11EffectShaderResourceVariable *g_pTexture2D = NULL;
ID3DX11EffectShaderResourceVariable *g_pTexture3D = NULL;
ID3DX11EffectShaderResourceVariable *g_pTextureCube = NULL;
static const char g_simpleEffectSrc[] =
"float4 g_vQuadRect; \n"
"int g_UseCase; \n"
"Texture2D g_Texture2D; \n"
"Texture3D g_Texture3D; \n"
"TextureCube g_TextureCube; \n"
"\n"
"SamplerState samLinear{ \n"
" Filter = MIN_MAG_LINEAR_MIP_POINT; \n"
"};\n"
"\n"
"struct Fragment{ \n"
" float4 Pos : SV_POSITION;\n"
" float3 Tex : TEXCOORD0; };\n"
"\n"
"Fragment VS( uint vertexId : SV_VertexID )\n"
"{\n"
" Fragment f;\n"
" f.Tex = float3( 0.f, 0.f, 0.f); \n"
" if (vertexId == 1) f.Tex.x = 1.f; \n"
" else if (vertexId == 2) f.Tex.y = 1.f; \n"
" else if (vertexId == 3) f.Tex.xy = float2(1.f, 1.f); \n"
" \n"
" f.Pos = float4( g_vQuadRect.xy + f.Tex * g_vQuadRect.zw, 0, 1);\n"
" \n"
" if (g_UseCase == 1) { \n"
" if (vertexId == 1) f.Tex.z = 0.5f; \n"
" else if (vertexId == 2) f.Tex.z = 0.5f; \n"
" else if (vertexId == 3) f.Tex.z = 1.f; \n"
" } \n"
" else if (g_UseCase >= 2) { \n"
" f.Tex.xy = f.Tex.xy * 2.f - 1.f; \n"
" } \n"
" return f;\n"
"}\n"
"\n"
"float4 PS( Fragment f ) : SV_Target\n"
"{\n"
" if (g_UseCase == 0) return g_Texture2D.Sample( samLinear, f.Tex.xy ); "
"\n"
" else if (g_UseCase == 1) return g_Texture3D.Sample( samLinear, f.Tex "
"); \n"
" else if (g_UseCase == 2) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.xy, 1.0) ); \n"
" else if (g_UseCase == 3) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.xy, -1.0) ); \n"
" else if (g_UseCase == 4) return g_TextureCube.Sample( samLinear, "
"float3(1.0, f.Tex.xy) ); \n"
" else if (g_UseCase == 5) return g_TextureCube.Sample( samLinear, "
"float3(-1.0, f.Tex.xy) ); \n"
" else if (g_UseCase == 6) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.x, 1.0, f.Tex.y) ); \n"
" else if (g_UseCase == 7) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.x, -1.0, f.Tex.y) ); \n"
" else return float4(f.Tex, 1);\n"
"}\n"
"\n"
"technique11 Render\n"
"{\n"
" pass P0\n"
" {\n"
" SetVertexShader( CompileShader( vs_5_0, VS() ) );\n"
" SetGeometryShader( NULL );\n"
" SetPixelShader( CompileShader( ps_5_0, PS() ) );\n"
" }\n"
"}\n"
"\n";
#else
//
// Vertex and Pixel shaders here : VS() & PS()
//
static const char g_simpleShaders[] =
"cbuffer cbuf \n"
"{ \n"
" float4 g_vQuadRect; \n"
" int g_UseCase; \n"
"} \n"
"Texture2D g_Texture2D; \n"
"Texture3D g_Texture3D; \n"
"TextureCube g_TextureCube; \n"
"\n"
"SamplerState samLinear{ \n"
" Filter = MIN_MAG_LINEAR_MIP_POINT; \n"
"};\n"
"\n"
"struct Fragment{ \n"
" float4 Pos : SV_POSITION;\n"
" float3 Tex : TEXCOORD0; };\n"
"\n"
"Fragment VS( uint vertexId : SV_VertexID )\n"
"{\n"
" Fragment f;\n"
" f.Tex = float3( 0.f, 0.f, 0.f); \n"
" if (vertexId == 1) f.Tex.x = 1.f; \n"
" else if (vertexId == 2) f.Tex.y = 1.f; \n"
" else if (vertexId == 3) f.Tex.xy = float2(1.f, 1.f); \n"
" \n"
" f.Pos = float4( g_vQuadRect.xy + f.Tex * g_vQuadRect.zw, 0, 1);\n"
" \n"
" if (g_UseCase == 1) { \n"
" if (vertexId == 1) f.Tex.z = 0.5f; \n"
" else if (vertexId == 2) f.Tex.z = 0.5f; \n"
" else if (vertexId == 3) f.Tex.z = 1.f; \n"
" } \n"
" else if (g_UseCase >= 2) { \n"
" f.Tex.xy = f.Tex.xy * 2.f - 1.f; \n"
" } \n"
" return f;\n"
"}\n"
"\n"
"float4 PS( Fragment f ) : SV_Target\n"
"{\n"
" if (g_UseCase == 0) return g_Texture2D.Sample( samLinear, f.Tex.xy ); "
"\n"
" else if (g_UseCase == 1) return g_Texture3D.Sample( samLinear, f.Tex "
"); \n"
" else if (g_UseCase == 2) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.xy, 1.0) ); \n"
" else if (g_UseCase == 3) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.xy, -1.0) ); \n"
" else if (g_UseCase == 4) return g_TextureCube.Sample( samLinear, "
"float3(1.0, f.Tex.xy) ); \n"
" else if (g_UseCase == 5) return g_TextureCube.Sample( samLinear, "
"float3(-1.0, f.Tex.xy) ); \n"
" else if (g_UseCase == 6) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.x, 1.0, f.Tex.y) ); \n"
" else if (g_UseCase == 7) return g_TextureCube.Sample( samLinear, "
"float3(f.Tex.x, -1.0, f.Tex.y) ); \n"
" else return float4(f.Tex, 1);\n"
"}\n"
"\n";
struct ConstantBuffer {
float vQuadRect[4];
int UseCase;
};
ID3D11VertexShader *g_pVertexShader;
ID3D11PixelShader *g_pPixelShader;
ID3D11Buffer *g_pConstantBuffer;
ID3D11SamplerState *g_pSamplerState;
#endif
// testing/tracing function used pervasively in tests. if the condition is
// unsatisfied
// then spew and fail the function immediately (doing no cleanup)
#define AssertOrQuit(x) \
if (!(x)) { \
fprintf(stdout, "Assert unsatisfied in %s at %s:%d\n", __FUNCTION__, \
__FILE__, __LINE__); \
return 1; \
}
bool g_bDone = false;
bool g_bPassed = true;
int *pArgc = NULL;
char **pArgv = NULL;
const unsigned int g_WindowWidth = 720;
const unsigned int g_WindowHeight = 720;
int g_iFrameToCompare = 10;
// Data structure for 2D texture shared between DX10 and CUDA
struct {
ID3D11Texture2D *pTexture;
ID3D11ShaderResourceView *pSRView;
cudaGraphicsResource *cudaResource;
void *cudaLinearMemory;
size_t pitch;
int width;
int height;
#ifndef USEEFFECT
int offsetInShader;
#endif
} g_texture_2d;
// Data structure for volume textures shared between DX10 and CUDA
struct {
ID3D11Texture3D *pTexture;
ID3D11ShaderResourceView *pSRView;
cudaGraphicsResource *cudaResource;
void *cudaLinearMemory;
size_t pitch;
int width;
int height;
int depth;
#ifndef USEEFFECT
int offsetInShader;
#endif
} g_texture_3d;
// Data structure for cube texture shared between DX10 and CUDA
struct {
ID3D11Texture2D *pTexture;
ID3D11ShaderResourceView *pSRView;
cudaGraphicsResource *cudaResource;
void *cudaLinearMemory;
size_t pitch;
int size;
#ifndef USEEFFECT
int offsetInShader;
#endif
} g_texture_cube;
// The CUDA kernel launchers that get called
extern "C" {
bool cuda_texture_2d(void *surface, size_t width, size_t height, size_t pitch,
float t);
bool cuda_texture_3d(void *surface, int width, int height, int depth,
size_t pitch, size_t pitchslice, float t);
bool cuda_texture_cube(void *surface, int width, int height, size_t pitch,
int face, float t);
}
//-----------------------------------------------------------------------------
// Forward declarations
//-----------------------------------------------------------------------------
HRESULT InitD3D(HWND hWnd);
HRESULT InitTextures();
void RunKernels();
bool DrawScene();
void Cleanup();
void Render();
LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);
#define NAME_LEN 512
bool findCUDADevice() {
int nGraphicsGPU = 0;
int deviceCount = 0;
bool bFoundGraphics = false;
char devname[NAME_LEN];
// This function call returns 0 if there are no CUDA capable devices.
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id != cudaSuccess) {
printf("cudaGetDeviceCount returned %d\n-> %s\n", (int)error_id,
cudaGetErrorString(error_id));
exit(EXIT_FAILURE);
}
if (deviceCount == 0) {
printf("> There are no device(s) supporting CUDA\n");
return false;
} else {
printf("> Found %d CUDA Capable Device(s)\n", deviceCount);
}
// Get CUDA device properties
cudaDeviceProp deviceProp;
for (int dev = 0; dev < deviceCount; ++dev) {
cudaGetDeviceProperties(&deviceProp, dev);
STRCPY(devname, NAME_LEN, deviceProp.name);
printf("> GPU %d: %s\n", dev, devname);
}
return true;
}
bool findDXDevice(char *dev_name) {
HRESULT hr = S_OK;
cudaError cuStatus;
// Iterate through the candidate adapters
IDXGIFactory *pFactory;
hr = sFnPtr_CreateDXGIFactory(__uuidof(IDXGIFactory), (void **)(&pFactory));
if (!SUCCEEDED(hr)) {
printf("> No DXGI Factory created.\n");
return false;
}
UINT adapter = 0;
for (; !g_pCudaCapableAdapter; ++adapter) {
// Get a candidate DXGI adapter
IDXGIAdapter *pAdapter = NULL;
hr = pFactory->EnumAdapters(adapter, &pAdapter);
if (FAILED(hr)) {
break; // no compatible adapters found
}
// Query to see if there exists a corresponding compute device
int cuDevice;
cuStatus = cudaD3D11GetDevice(&cuDevice, pAdapter);
printLastCudaError("cudaD3D11GetDevice failed"); // This prints and resets
// the cudaError to
// cudaSuccess
if (cudaSuccess == cuStatus) {
// If so, mark it as the one against which to create our d3d10 device
g_pCudaCapableAdapter = pAdapter;
g_pCudaCapableAdapter->AddRef();
}
pAdapter->Release();
}
printf("> Found %d D3D11 Adapater(s).\n", (int)adapter);
pFactory->Release();
if (!g_pCudaCapableAdapter) {
printf("> Found 0 D3D11 Adapater(s) /w Compute capability.\n");
return false;
}
DXGI_ADAPTER_DESC adapterDesc;
g_pCudaCapableAdapter->GetDesc(&adapterDesc);
wcstombs(dev_name, adapterDesc.Description, 128);
printf("> Found 1 D3D11 Adapater(s) /w Compute capability.\n");
printf("> %s\n", dev_name);
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[]) {
char device_name[256];
char *ref_file = NULL;
pArgc = &argc;
pArgv = argv;
printf("[%s] - Starting...\n", SDK_name);
if (!findCUDADevice()) // Search for CUDA GPU
{
printf("> CUDA Device NOT found on \"%s\".. Exiting.\n", device_name);
exit(EXIT_SUCCESS);
}
if (!dynlinkLoadD3D11API()) // Search for D3D API (locate drivers, does not
// mean device is found)
{
printf("> D3D11 API libraries NOT found on.. Exiting.\n");
dynlinkUnloadD3D11API();
exit(EXIT_SUCCESS);
}
if (!findDXDevice(device_name)) // Search for D3D Hardware Device
{
printf("> D3D11 Graphics Device NOT found.. Exiting.\n");
dynlinkUnloadD3D11API();
exit(EXIT_SUCCESS);
}
// command line options
if (argc > 1) {
// automatied build testing harness
if (checkCmdLineFlag(argc, (const char **)argv, "file"))
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
}
//
// create window
//
// Register the window class
#if 1
WNDCLASSEX wc = {sizeof(WNDCLASSEX),
CS_CLASSDC,
MsgProc,
0L,
0L,
GetModuleHandle(NULL),
NULL,
NULL,
NULL,
NULL,
"CUDA SDK",
NULL};
RegisterClassEx(&wc);
// Create the application's window
int xBorder = ::GetSystemMetrics(SM_CXSIZEFRAME);
int yMenu = ::GetSystemMetrics(SM_CYMENU);
int yBorder = ::GetSystemMetrics(SM_CYSIZEFRAME);
HWND hWnd = CreateWindow(
wc.lpszClassName, "CUDA/D3D11 Texture InterOP", WS_OVERLAPPEDWINDOW, 0, 0,
g_WindowWidth + 2 * xBorder, g_WindowHeight + 2 * yBorder + yMenu, NULL,
NULL, wc.hInstance, NULL);
#else
static WNDCLASSEX wc = {
sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,
GetModuleHandle(NULL), NULL, NULL, NULL, NULL,
"CudaD3D9Tex", NULL};
RegisterClassEx(&wc);
HWND hWnd = CreateWindow("CudaD3D9Tex", "CUDA D3D9 Texture Interop",
WS_OVERLAPPEDWINDOW, 0, 0, 800, 320,
GetDesktopWindow(), NULL, wc.hInstance, NULL);
#endif
ShowWindow(hWnd, SW_SHOWDEFAULT);
UpdateWindow(hWnd);
// Initialize Direct3D
if (SUCCEEDED(InitD3D(hWnd)) && SUCCEEDED(InitTextures())) {
// 2D
// register the Direct3D resources that we'll use
// we'll read to and write from g_texture_2d, so don't set any special map
// flags for it
cudaGraphicsD3D11RegisterResource(&g_texture_2d.cudaResource,
g_texture_2d.pTexture,
cudaGraphicsRegisterFlagsNone);
getLastCudaError("cudaGraphicsD3D11RegisterResource (g_texture_2d) failed");
// cuda cannot write into the texture directly : the texture is seen as a
// cudaArray and can only be mapped as a texture
// Create a buffer so that cuda can write into it
// pixel fmt is DXGI_FORMAT_R32G32B32A32_FLOAT
cudaMallocPitch(&g_texture_2d.cudaLinearMemory, &g_texture_2d.pitch,
g_texture_2d.width * sizeof(float) * 4,
g_texture_2d.height);
getLastCudaError("cudaMallocPitch (g_texture_2d) failed");
cudaMemset(g_texture_2d.cudaLinearMemory, 1,
g_texture_2d.pitch * g_texture_2d.height);
// CUBE
cudaGraphicsD3D11RegisterResource(&g_texture_cube.cudaResource,
g_texture_cube.pTexture,
cudaGraphicsRegisterFlagsNone);
getLastCudaError(
"cudaGraphicsD3D11RegisterResource (g_texture_cube) failed");
// create the buffer. pixel fmt is DXGI_FORMAT_R8G8B8A8_SNORM
cudaMallocPitch(&g_texture_cube.cudaLinearMemory, &g_texture_cube.pitch,
g_texture_cube.size * 4, g_texture_cube.size);
getLastCudaError("cudaMallocPitch (g_texture_cube) failed");
cudaMemset(g_texture_cube.cudaLinearMemory, 1,
g_texture_cube.pitch * g_texture_cube.size);
getLastCudaError("cudaMemset (g_texture_cube) failed");
// 3D
cudaGraphicsD3D11RegisterResource(&g_texture_3d.cudaResource,
g_texture_3d.pTexture,
cudaGraphicsRegisterFlagsNone);
getLastCudaError("cudaGraphicsD3D11RegisterResource (g_texture_3d) failed");
// create the buffer. pixel fmt is DXGI_FORMAT_R8G8B8A8_SNORM
// cudaMallocPitch(&g_texture_3d.cudaLinearMemory, &g_texture_3d.pitch,
// g_texture_3d.width * 4, g_texture_3d.height * g_texture_3d.depth);
cudaMalloc(
&g_texture_3d.cudaLinearMemory,
g_texture_3d.width * 4 * g_texture_3d.height * g_texture_3d.depth);
g_texture_3d.pitch = g_texture_3d.width * 4;
getLastCudaError("cudaMallocPitch (g_texture_3d) failed");
cudaMemset(g_texture_3d.cudaLinearMemory, 1,
g_texture_3d.pitch * g_texture_3d.height * g_texture_3d.depth);
getLastCudaError("cudaMemset (g_texture_3d) failed");
}
//
// the main loop
//
while (false == g_bDone) {
Render();
//
// handle I/O
//
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT) {
if (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
} else {
Render();
if (ref_file) {
for (int count = 0; count < g_iFrameToCompare; count++) {
Render();
}
const char *cur_image_path = "simpleD3D11Texture.ppm";
// Save a reference of our current test run image
CheckRenderD3D11::ActiveRenderTargetToPPM(g_pd3dDevice,
cur_image_path);
// compare to offical reference image, printing PASS or FAIL.
g_bPassed = CheckRenderD3D11::PPMvsPPM(cur_image_path, ref_file,
argv[0], MAX_EPSILON, 0.15f);
g_bDone = true;
Cleanup();
PostQuitMessage(0);
} else {
g_bPassed = true;
}
}
}
};
// Release D3D Library (after message loop)
dynlinkUnloadD3D11API();
// Unregister windows class
UnregisterClass(wc.lpszClassName, wc.hInstance);
//
// and exit
//
printf("> %s running on %s exiting...\n", SDK_name, device_name);
exit(g_bPassed ? EXIT_SUCCESS : EXIT_FAILURE);
}
//-----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
//-----------------------------------------------------------------------------
HRESULT InitD3D(HWND hWnd) {
HRESULT hr = S_OK;
// Set up the structure used to create the device and swapchain
DXGI_SWAP_CHAIN_DESC sd;
ZeroMemory(&sd, sizeof(sd));
sd.BufferCount = 1;
sd.BufferDesc.Width = g_WindowWidth;
sd.BufferDesc.Height = g_WindowHeight;
sd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
sd.BufferDesc.RefreshRate.Numerator = 60;
sd.BufferDesc.RefreshRate.Denominator = 1;
sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
sd.OutputWindow = hWnd;
sd.SampleDesc.Count = 1;
sd.SampleDesc.Quality = 0;
sd.Windowed = TRUE;
D3D_FEATURE_LEVEL tour_fl[] = {D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0};
D3D_FEATURE_LEVEL flRes;
// Create device and swapchain
hr = sFnPtr_D3D11CreateDeviceAndSwapChain(
g_pCudaCapableAdapter,
D3D_DRIVER_TYPE_UNKNOWN, // D3D_DRIVER_TYPE_HARDWARE,
NULL, // HMODULE Software
0, // UINT Flags
tour_fl, // D3D_FEATURE_LEVEL* pFeatureLevels
3, // FeatureLevels
D3D11_SDK_VERSION, // UINT SDKVersion
&sd, // DXGI_SWAP_CHAIN_DESC* pSwapChainDesc
&g_pSwapChain, // IDXGISwapChain** ppSwapChain
&g_pd3dDevice, // ID3D11Device** ppDevice
&flRes, // D3D_FEATURE_LEVEL* pFeatureLevel
&g_pd3dDeviceContext // ID3D11DeviceContext** ppImmediateContext
);
AssertOrQuit(SUCCEEDED(hr));
g_pCudaCapableAdapter->Release();
// Get the immediate DeviceContext
g_pd3dDevice->GetImmediateContext(&g_pd3dDeviceContext);
// Create a render target view of the swapchain
ID3D11Texture2D *pBuffer;
hr =
g_pSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID *)&pBuffer);
AssertOrQuit(SUCCEEDED(hr));
hr = g_pd3dDevice->CreateRenderTargetView(pBuffer, NULL, &g_pSwapChainRTV);
AssertOrQuit(SUCCEEDED(hr));
pBuffer->Release();
g_pd3dDeviceContext->OMSetRenderTargets(1, &g_pSwapChainRTV, NULL);
// Setup the viewport
D3D11_VIEWPORT vp;
vp.Width = g_WindowWidth;
vp.Height = g_WindowHeight;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
g_pd3dDeviceContext->RSSetViewports(1, &vp);
#ifdef USEEFFECT
// Setup the effect
{
ID3D10Blob *effectCode, *effectErrors;
hr = D3DX11CompileFromMemory(
g_simpleEffectSrc, sizeof(g_simpleEffectSrc), "NoFile", NULL, NULL, "",
"fx_5_0",
D3D10_SHADER_OPTIMIZATION_LEVEL0 |
D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY | D3D10_SHADER_DEBUG,
0, 0, &effectCode, &effectErrors, 0);
if (FAILED(hr)) {
const char *pStr = (const char *)effectErrors->GetBufferPointer();
printf(pStr);
assert(1);
}
hr = D3DX11CreateEffectFromMemory(
effectCode->GetBufferPointer(), effectCode->GetBufferSize(),
0 /*FXFlags*/, g_pd3dDevice, &g_pSimpleEffect);
AssertOrQuit(SUCCEEDED(hr));
g_pSimpleTechnique = g_pSimpleEffect->GetTechniqueByName("Render");
g_pvQuadRect =
g_pSimpleEffect->GetVariableByName("g_vQuadRect")->AsVector();
g_pUseCase = g_pSimpleEffect->GetVariableByName("g_UseCase")->AsScalar();
g_pTexture2D =
g_pSimpleEffect->GetVariableByName("g_Texture2D")->AsShaderResource();
g_pTexture3D =
g_pSimpleEffect->GetVariableByName("g_Texture3D")->AsShaderResource();
g_pTextureCube =
g_pSimpleEffect->GetVariableByName("g_TextureCube")->AsShaderResource();
}
#else
ID3DBlob *pShader;
ID3DBlob *pErrorMsgs;
// Vertex shader
{
hr = D3DCompile(g_simpleShaders, strlen(g_simpleShaders), "Memory", NULL,
NULL, "VS", "vs_4_0", 0 /*Flags1*/, 0 /*Flags2*/, &pShader,
&pErrorMsgs);
if (FAILED(hr)) {
const char *pStr = (const char *)pErrorMsgs->GetBufferPointer();
printf(pStr);
}
AssertOrQuit(SUCCEEDED(hr));
hr = g_pd3dDevice->CreateVertexShader(pShader->GetBufferPointer(),
pShader->GetBufferSize(), NULL,
&g_pVertexShader);
AssertOrQuit(SUCCEEDED(hr));
// Let's bind it now : no other vtx shader will replace it...
g_pd3dDeviceContext->VSSetShader(g_pVertexShader, NULL, 0);
// hr = g_pd3dDevice->CreateInputLayout(...pShader used for signature...) No
// need
}
// Pixel shader
{
hr = D3DCompile(g_simpleShaders, strlen(g_simpleShaders), "Memory", NULL,
NULL, "PS", "ps_4_0", 0 /*Flags1*/, 0 /*Flags2*/, &pShader,
&pErrorMsgs);
AssertOrQuit(SUCCEEDED(hr));
hr = g_pd3dDevice->CreatePixelShader(pShader->GetBufferPointer(),
pShader->GetBufferSize(), NULL,
&g_pPixelShader);
AssertOrQuit(SUCCEEDED(hr));
// Let's bind it now : no other pix shader will replace it...
g_pd3dDeviceContext->PSSetShader(g_pPixelShader, NULL, 0);
}
// Create the constant buffer
{
D3D11_BUFFER_DESC cbDesc;
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags =
D3D11_BIND_CONSTANT_BUFFER; // D3D11_BIND_SHADER_RESOURCE;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = 16 * ((sizeof(ConstantBuffer) + 16) / 16);
// cbDesc.StructureByteStride = 0;
hr = g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pConstantBuffer);
AssertOrQuit(SUCCEEDED(hr));
// Assign the buffer now : nothing in the code will interfere with this
// (very simple sample)
g_pd3dDeviceContext->VSSetConstantBuffers(0, 1, &g_pConstantBuffer);
g_pd3dDeviceContext->PSSetConstantBuffers(0, 1, &g_pConstantBuffer);
}
// SamplerState
{
D3D11_SAMPLER_DESC sDesc;
sDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
sDesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sDesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sDesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
sDesc.MinLOD = 0;
sDesc.MaxLOD = 8;
sDesc.MipLODBias = 0;
sDesc.MaxAnisotropy = 1;
hr = g_pd3dDevice->CreateSamplerState(&sDesc, &g_pSamplerState);
AssertOrQuit(SUCCEEDED(hr));
g_pd3dDeviceContext->PSSetSamplers(0, 1, &g_pSamplerState);
}
#endif
// Setup no Input Layout
g_pd3dDeviceContext->IASetInputLayout(0);
g_pd3dDeviceContext->IASetPrimitiveTopology(
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
D3D11_RASTERIZER_DESC rasterizerState;
rasterizerState.FillMode = D3D11_FILL_SOLID;
rasterizerState.CullMode = D3D11_CULL_FRONT;
rasterizerState.FrontCounterClockwise = false;
rasterizerState.DepthBias = false;
rasterizerState.DepthBiasClamp = 0;
rasterizerState.SlopeScaledDepthBias = 0;
rasterizerState.DepthClipEnable = false;
rasterizerState.ScissorEnable = false;
rasterizerState.MultisampleEnable = false;
rasterizerState.AntialiasedLineEnable = false;
g_pd3dDevice->CreateRasterizerState(&rasterizerState, &g_pRasterState);
g_pd3dDeviceContext->RSSetState(g_pRasterState);
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: InitTextures()
// Desc: Initializes Direct3D Textures (allocation and initialization)
//-----------------------------------------------------------------------------
HRESULT InitTextures() {
//
// create the D3D resources we'll be using
//
// 2D texture
{
g_texture_2d.width = 256;
g_texture_2d.height = 256;
D3D11_TEXTURE2D_DESC desc;
ZeroMemory(&desc, sizeof(D3D11_TEXTURE2D_DESC));
desc.Width = g_texture_2d.width;
desc.Height = g_texture_2d.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = DXGI_FORMAT_R32G32B32A32_FLOAT;
desc.SampleDesc.Count = 1;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
if (FAILED(g_pd3dDevice->CreateTexture2D(&desc, NULL,
&g_texture_2d.pTexture))) {
return E_FAIL;
}
if (FAILED(g_pd3dDevice->CreateShaderResourceView(
g_texture_2d.pTexture, NULL, &g_texture_2d.pSRView))) {
return E_FAIL;
}
#ifdef USEEFFECT
g_pTexture2D->SetResource(g_texture_2d.pSRView);
#else
g_texture_2d.offsetInShader =
0; // to be clean we should look for the offset from the shader code
g_pd3dDeviceContext->PSSetShaderResources(g_texture_2d.offsetInShader, 1,
&g_texture_2d.pSRView);
#endif
}
// 3D texture
{
g_texture_3d.width = 64;
g_texture_3d.height = 64;
g_texture_3d.depth = 64;
D3D11_TEXTURE3D_DESC desc;
ZeroMemory(&desc, sizeof(D3D11_TEXTURE3D_DESC));
desc.Width = g_texture_3d.width;
desc.Height = g_texture_3d.height;
desc.Depth = g_texture_3d.depth;
desc.MipLevels = 1;
desc.Format = DXGI_FORMAT_R8G8B8A8_SNORM;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
if (FAILED(g_pd3dDevice->CreateTexture3D(&desc, NULL,
&g_texture_3d.pTexture))) {
return E_FAIL;
}
if (FAILED(g_pd3dDevice->CreateShaderResourceView(
g_texture_3d.pTexture, NULL, &g_texture_3d.pSRView))) {
return E_FAIL;
}
#ifdef USEEFFECT
g_pTexture3D->SetResource(g_texture_3d.pSRView);
#else
g_texture_3d.offsetInShader =
1; // to be clean we should look for the offset from the shader code
g_pd3dDeviceContext->PSSetShaderResources(g_texture_3d.offsetInShader, 1,
&g_texture_3d.pSRView);
#endif
}
// cube texture
{
g_texture_cube.size = 64;
D3D11_TEXTURE2D_DESC desc;
ZeroMemory(&desc, sizeof(D3D11_TEXTURE2D_DESC));
desc.Width = g_texture_cube.size;
desc.Height = g_texture_cube.size;
desc.MipLevels = 1;
desc.ArraySize = 6;
desc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
desc.SampleDesc.Count = 1;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE;
if (FAILED(g_pd3dDevice->CreateTexture2D(&desc, NULL,
&g_texture_cube.pTexture))) {
return E_FAIL;
}
D3D11_SHADER_RESOURCE_VIEW_DESC SRVDesc;
ZeroMemory(&SRVDesc, sizeof(SRVDesc));
SRVDesc.Format = desc.Format;
SRVDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
SRVDesc.TextureCube.MipLevels = desc.MipLevels;
SRVDesc.TextureCube.MostDetailedMip = 0;
if (FAILED(g_pd3dDevice->CreateShaderResourceView(
g_texture_cube.pTexture, &SRVDesc, &g_texture_cube.pSRView))) {
return E_FAIL;
}
#ifdef USEEFFECT
g_pTextureCube->SetResource(g_texture_cube.pSRView);
#else
g_texture_cube.offsetInShader =
2; // to be clean we should look for the offset from the shader code
g_pd3dDeviceContext->PSSetShaderResources(g_texture_cube.offsetInShader, 1,
&g_texture_cube.pSRView);
#endif
}
return S_OK;
}
////////////////////////////////////////////////////////////////////////////////
//! Run the Cuda part of the computation
////////////////////////////////////////////////////////////////////////////////
void RunKernels() {
static float t = 0.0f;
// populate the 2d texture
{
cudaArray *cuArray;
cudaGraphicsSubResourceGetMappedArray(&cuArray, g_texture_2d.cudaResource,
0, 0);
getLastCudaError(
"cudaGraphicsSubResourceGetMappedArray (cuda_texture_2d) failed");
// kick off the kernel and send the staging buffer cudaLinearMemory as an
// argument to allow the kernel to write to it
cuda_texture_2d(g_texture_2d.cudaLinearMemory, g_texture_2d.width,
g_texture_2d.height, g_texture_2d.pitch, t);
getLastCudaError("cuda_texture_2d failed");
// then we want to copy cudaLinearMemory to the D3D texture, via its mapped
// form : cudaArray
cudaMemcpy2DToArray(
cuArray, // dst array
0, 0, // offset
g_texture_2d.cudaLinearMemory, g_texture_2d.pitch, // src
g_texture_2d.width * 4 * sizeof(float), g_texture_2d.height, // extent
cudaMemcpyDeviceToDevice); // kind
getLastCudaError("cudaMemcpy2DToArray failed");
}
// populate the volume texture
{
size_t pitchSlice = g_texture_3d.pitch * g_texture_3d.height;
cudaArray *cuArray;
cudaGraphicsSubResourceGetMappedArray(&cuArray, g_texture_3d.cudaResource,
0, 0);
getLastCudaError(
"cudaGraphicsSubResourceGetMappedArray (cuda_texture_3d) failed");
// kick off the kernel and send the staging buffer cudaLinearMemory as an
// argument to allow the kernel to write to it
cuda_texture_3d(g_texture_3d.cudaLinearMemory, g_texture_3d.width,
g_texture_3d.height, g_texture_3d.depth, g_texture_3d.pitch,
pitchSlice, t);
getLastCudaError("cuda_texture_3d failed");
// then we want to copy cudaLinearMemory to the D3D texture, via its mapped
// form : cudaArray
struct cudaMemcpy3DParms memcpyParams = {0};
memcpyParams.dstArray = cuArray;
memcpyParams.srcPtr.ptr = g_texture_3d.cudaLinearMemory;
memcpyParams.srcPtr.pitch = g_texture_3d.pitch;
memcpyParams.srcPtr.xsize = g_texture_3d.width;
memcpyParams.srcPtr.ysize = g_texture_3d.height;
memcpyParams.extent.width = g_texture_3d.width;
memcpyParams.extent.height = g_texture_3d.height;
memcpyParams.extent.depth = g_texture_3d.depth;
memcpyParams.kind = cudaMemcpyDeviceToDevice;
cudaMemcpy3D(&memcpyParams);
getLastCudaError("cudaMemcpy3D failed");
}
// populate the faces of the cube map
for (int face = 0; face < 6; ++face) {
cudaArray *cuArray;
cudaGraphicsSubResourceGetMappedArray(&cuArray, g_texture_cube.cudaResource,
face, 0);
getLastCudaError(
"cudaGraphicsSubResourceGetMappedArray (cuda_texture_cube) failed");
// kick off the kernel and send the staging buffer cudaLinearMemory as an
// argument to allow the kernel to write to it
cuda_texture_cube(g_texture_cube.cudaLinearMemory, g_texture_cube.size,
g_texture_cube.size, g_texture_cube.pitch, face, t);
getLastCudaError("cuda_texture_cube failed");
// then we want to copy cudaLinearMemory to the D3D texture, via its mapped
// form : cudaArray
cudaMemcpy2DToArray(cuArray, // dst array
0, 0, // offset
g_texture_cube.cudaLinearMemory,
g_texture_cube.pitch, // src
g_texture_cube.size * 4, g_texture_cube.size, // extent
cudaMemcpyDeviceToDevice); // kind
getLastCudaError("cudaMemcpy2DToArray failed");
}
t += 0.1f;
}
////////////////////////////////////////////////////////////////////////////////
//! Draw the final result on the screen
////////////////////////////////////////////////////////////////////////////////
bool DrawScene() {
// Clear the backbuffer to a black color
float ClearColor[4] = {0.5f, 0.5f, 0.6f, 1.0f};
g_pd3dDeviceContext->ClearRenderTargetView(g_pSwapChainRTV, ClearColor);
float quadRect[4] = {-0.9f, -0.9f, 0.7f, 0.7f};
//
// draw the 2d texture
//
#ifdef USEEFFECT
g_pUseCase->SetInt(0);
g_pvQuadRect->SetFloatVector((float *)&quadRect);
g_pSimpleTechnique->GetPassByIndex(0)->Apply(0, g_pd3dDeviceContext);
#else
HRESULT hr;
D3D11_MAPPED_SUBRESOURCE mappedResource;
ConstantBuffer *pcb;
hr = g_pd3dDeviceContext->Map(g_pConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD,
0, &mappedResource);
AssertOrQuit(SUCCEEDED(hr));
pcb = (ConstantBuffer *)mappedResource.pData;
{
memcpy(pcb->vQuadRect, quadRect, sizeof(float) * 4);
pcb->UseCase = 0;
}
g_pd3dDeviceContext->Unmap(g_pConstantBuffer, 0);
#endif
g_pd3dDeviceContext->Draw(4, 0);
//
// draw a slice the 3d texture
//
quadRect[1] = 0.1f;
#ifdef USEEFFECT
g_pUseCase->SetInt(1);
g_pvQuadRect->SetFloatVector((float *)&quadRect);
g_pSimpleTechnique->GetPassByIndex(0)->Apply(0, g_pd3dDeviceContext);
#else
hr = g_pd3dDeviceContext->Map(g_pConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD,
0, &mappedResource);
AssertOrQuit(SUCCEEDED(hr));
pcb = (ConstantBuffer *)mappedResource.pData;
{
memcpy(pcb->vQuadRect, quadRect, sizeof(float) * 4);
pcb->UseCase = 1;
}
g_pd3dDeviceContext->Unmap(g_pConstantBuffer, 0);
#endif
g_pd3dDeviceContext->Draw(4, 0);
//
// draw the 6 faces of the cube texture
//
float faceRect[4] = {-0.1f, -0.9f, 0.5f, 0.5f};
for (int f = 0; f < 6; f++) {
if (f == 3) {
faceRect[0] += 0.55f;
faceRect[1] = -0.9f;
}
#ifdef USEEFFECT
g_pUseCase->SetInt(2 + f);
g_pvQuadRect->SetFloatVector((float *)&faceRect);
g_pSimpleTechnique->GetPassByIndex(0)->Apply(0, g_pd3dDeviceContext);
#else
hr = g_pd3dDeviceContext->Map(g_pConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD,
0, &mappedResource);
AssertOrQuit(SUCCEEDED(hr));
pcb = (ConstantBuffer *)mappedResource.pData;
{
memcpy(pcb->vQuadRect, faceRect, sizeof(float) * 4);
pcb->UseCase = 2 + f;
}
g_pd3dDeviceContext->Unmap(g_pConstantBuffer, 0);
#endif
g_pd3dDeviceContext->Draw(4, 0);
faceRect[1] += 0.6f;
}
// Present the backbuffer contents to the display
g_pSwapChain->Present(0, 0);
return true;
}
//-----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
//-----------------------------------------------------------------------------
void Cleanup() {
// unregister the Cuda resources
cudaGraphicsUnregisterResource(g_texture_2d.cudaResource);
getLastCudaError("cudaGraphicsUnregisterResource (g_texture_2d) failed");
cudaFree(g_texture_2d.cudaLinearMemory);
getLastCudaError("cudaFree (g_texture_2d) failed");
cudaGraphicsUnregisterResource(g_texture_cube.cudaResource);
getLastCudaError("cudaGraphicsUnregisterResource (g_texture_cube) failed");
cudaFree(g_texture_cube.cudaLinearMemory);
getLastCudaError("cudaFree (g_texture_2d) failed");
cudaGraphicsUnregisterResource(g_texture_3d.cudaResource);
getLastCudaError("cudaGraphicsUnregisterResource (g_texture_3d) failed");
cudaFree(g_texture_3d.cudaLinearMemory);
getLastCudaError("cudaFree (g_texture_2d) failed");
//
// clean up Direct3D
//
{
// release the resources we created
g_texture_2d.pSRView->Release();
g_texture_2d.pTexture->Release();
g_texture_cube.pSRView->Release();
g_texture_cube.pTexture->Release();
g_texture_3d.pSRView->Release();
g_texture_3d.pTexture->Release();
if (g_pInputLayout != NULL) {
g_pInputLayout->Release();
}
#ifdef USEEFFECT
if (g_pSimpleEffect != NULL) {
g_pSimpleEffect->Release();
}
#else
if (g_pVertexShader) {
g_pVertexShader->Release();
}
if (g_pPixelShader) {
g_pPixelShader->Release();
}
if (g_pConstantBuffer) {
g_pConstantBuffer->Release();
}
if (g_pSamplerState) {
g_pSamplerState->Release();
}
#endif
if (g_pSwapChainRTV != NULL) {
g_pSwapChainRTV->Release();
}
if (g_pSwapChain != NULL) {
g_pSwapChain->Release();
}
if (g_pd3dDevice != NULL) {
g_pd3dDevice->Release();
}
}
}
//-----------------------------------------------------------------------------
// Name: Render()
// Desc: Launches the CUDA kernels to fill in the texture data
//-----------------------------------------------------------------------------
void Render() {
//
// map the resources we've registered so we can access them in Cuda
// - it is most efficient to map and unmap all resources in a single call,
// and to have the map/unmap calls be the boundary between using the GPU
// for Direct3D and Cuda
//
static bool doit = true;
if (doit) {
doit = true;
cudaStream_t stream = 0;
const int nbResources = 3;
cudaGraphicsResource *ppResources[nbResources] = {
g_texture_2d.cudaResource, g_texture_3d.cudaResource,
g_texture_cube.cudaResource,
};
cudaGraphicsMapResources(nbResources, ppResources, stream);
getLastCudaError("cudaGraphicsMapResources(3) failed");
//
// run kernels which will populate the contents of those textures
//
RunKernels();
//
// unmap the resources
//
cudaGraphicsUnmapResources(nbResources, ppResources, stream);
getLastCudaError("cudaGraphicsUnmapResources(3) failed");
}
//
// draw the scene using them
//
DrawScene();
}
//-----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
//-----------------------------------------------------------------------------
static LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam) {
switch (msg) {
case WM_KEYDOWN:
if (wParam == VK_ESCAPE) {
g_bDone = true;
Cleanup();
PostQuitMessage(0);
return 0;
}
break;
case WM_DESTROY:
g_bDone = true;
Cleanup();
PostQuitMessage(0);
return 0;
case WM_PAINT:
ValidateRect(hWnd, NULL);
return 0;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}