mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 18:39:16 +08:00
181 lines
5.9 KiB
C++
181 lines
5.9 KiB
C++
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample demonstrates the use of CURAND to generate
|
|
* random numbers on GPU and CPU.
|
|
*/
|
|
|
|
// Utilities and system includes
|
|
// includes, system
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <curand.h>
|
|
|
|
// Utilities and system includes
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <curand.h>
|
|
|
|
float compareResults(int rand_n, float *h_RandGPU, float *h_RandCPU);
|
|
|
|
const int DEFAULT_RAND_N = 2400000;
|
|
const unsigned int DEFAULT_SEED = 777;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
// Start logs
|
|
printf("%s Starting...\n\n", argv[0]);
|
|
|
|
// initialize the GPU, either identified by --device
|
|
// or by picking the device with highest flop rate.
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
// parsing the number of random numbers to generate
|
|
int rand_n = DEFAULT_RAND_N;
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "count")) {
|
|
rand_n = getCmdLineArgumentInt(argc, (const char **)argv, "count");
|
|
}
|
|
|
|
printf("Allocating data for %i samples...\n", rand_n);
|
|
|
|
// parsing the seed
|
|
int seed = DEFAULT_SEED;
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "seed")) {
|
|
seed = getCmdLineArgumentInt(argc, (const char **)argv, "seed");
|
|
}
|
|
|
|
printf("Seeding with %i ...\n", seed);
|
|
|
|
cudaStream_t stream;
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
|
|
float *d_Rand;
|
|
checkCudaErrors(cudaMalloc((void **)&d_Rand, rand_n * sizeof(float)));
|
|
|
|
curandGenerator_t prngGPU;
|
|
checkCudaErrors(curandCreateGenerator(&prngGPU, CURAND_RNG_PSEUDO_MTGP32));
|
|
checkCudaErrors(curandSetStream(prngGPU, stream));
|
|
checkCudaErrors(curandSetPseudoRandomGeneratorSeed(prngGPU, seed));
|
|
|
|
curandGenerator_t prngCPU;
|
|
checkCudaErrors(
|
|
curandCreateGeneratorHost(&prngCPU, CURAND_RNG_PSEUDO_MTGP32));
|
|
checkCudaErrors(curandSetPseudoRandomGeneratorSeed(prngCPU, seed));
|
|
|
|
//
|
|
// Example 1: Compare random numbers generated on GPU and CPU
|
|
float *h_RandGPU;
|
|
checkCudaErrors(cudaMallocHost(&h_RandGPU, rand_n * sizeof(float)));
|
|
|
|
printf("Generating random numbers on GPU...\n\n");
|
|
checkCudaErrors(curandGenerateUniform(prngGPU, (float *)d_Rand, rand_n));
|
|
|
|
printf("\nReading back the results...\n");
|
|
checkCudaErrors(cudaMemcpyAsync(h_RandGPU, d_Rand, rand_n * sizeof(float),
|
|
cudaMemcpyDeviceToHost, stream));
|
|
|
|
float *h_RandCPU = (float *)malloc(rand_n * sizeof(float));
|
|
|
|
printf("Generating random numbers on CPU...\n\n");
|
|
checkCudaErrors(curandGenerateUniform(prngCPU, (float *)h_RandCPU, rand_n));
|
|
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
printf("Comparing CPU/GPU random numbers...\n\n");
|
|
float L1norm = compareResults(rand_n, h_RandGPU, h_RandCPU);
|
|
|
|
//
|
|
// Example 2: Timing of random number generation on GPU
|
|
const int numIterations = 10;
|
|
int i;
|
|
StopWatchInterface *hTimer;
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
for (i = 0; i < numIterations; i++) {
|
|
checkCudaErrors(curandGenerateUniform(prngGPU, (float *)d_Rand, rand_n));
|
|
}
|
|
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
sdkStopTimer(&hTimer);
|
|
|
|
double gpuTime = 1.0e-3 * sdkGetTimerValue(&hTimer) / (double)numIterations;
|
|
|
|
printf(
|
|
"MersenneTwisterGP11213, Throughput = %.4f GNumbers/s, Time = %.5f s, "
|
|
"Size = %u Numbers\n",
|
|
1.0e-9 * rand_n / gpuTime, gpuTime, rand_n);
|
|
|
|
printf("Shutting down...\n");
|
|
|
|
checkCudaErrors(curandDestroyGenerator(prngGPU));
|
|
checkCudaErrors(curandDestroyGenerator(prngCPU));
|
|
checkCudaErrors(cudaStreamDestroy(stream));
|
|
checkCudaErrors(cudaFree(d_Rand));
|
|
sdkDeleteTimer(&hTimer);
|
|
checkCudaErrors(cudaFreeHost(h_RandGPU));
|
|
free(h_RandCPU);
|
|
|
|
exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
float compareResults(int rand_n, float *h_RandGPU, float *h_RandCPU) {
|
|
int i;
|
|
float rCPU, rGPU, delta;
|
|
float max_delta = 0.;
|
|
float sum_delta = 0.;
|
|
float sum_ref = 0.;
|
|
|
|
for (i = 0; i < rand_n; i++) {
|
|
rCPU = h_RandCPU[i];
|
|
rGPU = h_RandGPU[i];
|
|
delta = fabs(rCPU - rGPU);
|
|
sum_delta += delta;
|
|
sum_ref += fabs(rCPU);
|
|
|
|
if (delta >= max_delta) {
|
|
max_delta = delta;
|
|
}
|
|
}
|
|
|
|
float L1norm = (float)(sum_delta / sum_ref);
|
|
printf("Max absolute error: %E\n", max_delta);
|
|
printf("L1 norm: %E\n\n", L1norm);
|
|
|
|
return L1norm;
|
|
}
|