# cudaNvSci - CUDA NvSciBuf/NvSciSync Interop ## Description This sample demonstrates CUDA-NvSciBuf/NvSciSync Interop. Two CPU threads import the NvSciBuf and NvSciSync into CUDA to perform two image processing algorithms on a ppm image - image rotation in 1st thread & rgba to grayscale conversion of rotated image in 2nd thread. Currently only supported on Ubuntu 18.04 ## Key Concepts CUDA NvSci Interop, Data Parallel Algorithms, Image Processing ## Supported SM Architectures [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux ## Supported CPU Architecture x86_64, aarch64 ## CUDA APIs involved ### [CUDA Driver API](http://docs.nvidia.com/cuda/cuda-driver-api/index.html) cuDeviceGetUuid ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaExternalMemoryGetMappedBuffer, cudaImportExternalSemaphore, cudaDeviceGetAttribute, cudaNvSciSignal, cudaGetMipmappedArrayLevel, cudaImportNvSciRawBuf, cudaSetDevice, cudaImportNvSciImage, cudaNvSciApp, cudaDeviceId, cudaMallocHost, cudaSignalExternalSemaphoresAsync, cudaCreateTextureObject, cudaFreeHost, cudaNvSci, cudaNvSciWait, cudaGetDeviceCount, cudaMemcpyAsync, cudaStreamCreateWithFlags, cudaExternalMemoryGetMappedMipmappedArray, cudaStreamDestroy, cudaDeviceGetNvSciSyncAttributes, cudaDestroyTextureObject, cudaDestroyExternalMemory, cudaImportExternalMemory, cudaDestroyExternalSemaphore, cudaFreeMipmappedArray, cudaFree, cudaStreamSynchronize, cudaWaitExternalSemaphoresAsync, cudaImportNvSciSemaphore ## Dependencies needed to build/run [NVSCI](../../../README.md#nvsci) ## Prerequisites Download and install the [CUDA Toolkit 12.3](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## Build and Run ### Linux The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make: ``` $ cd $ make ``` The samples makefiles can take advantage of certain options: * **TARGET_ARCH=** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, aarch64. By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.
`$ make TARGET_ARCH=x86_64`
`$ make TARGET_ARCH=aarch64`
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details. * **dbg=1** - build with debug symbols ``` $ make dbg=1 ``` * **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`. ``` $ make SMS="50 60" ``` * **HOST_COMPILER=** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers. ``` $ make HOST_COMPILER=g++ ``` ## References (for more details)