/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Type-specific implementation of rounded arithmetic operators. // Thin layer over the CUDA intrinsics. #ifndef CUDA_INTERVAL_ROUNDED_ARITH_H #define CUDA_INTERVAL_ROUNDED_ARITH_H // Generic class, no actual implementation yet template struct rounded_arith { __device__ T add_down(const T &x, const T &y); __device__ T add_up(const T &x, const T &y); __device__ T sub_down(const T &x, const T &y); __device__ T sub_up(const T &x, const T &y); __device__ T mul_down(const T &x, const T &y); __device__ T mul_up(const T &x, const T &y); __device__ T div_down(const T &x, const T &y); __device__ T div_up(const T &x, const T &y); __device__ T median(const T &x, const T &y); __device__ T sqrt_down(const T &x); __device__ T sqrt_up(const T &x); __device__ T int_down(const T &x); __device__ T int_up(const T &x); __device__ T pos_inf(); __device__ T neg_inf(); __device__ __host__ T nan(); __device__ T min(T const &x, T const &y); __device__ T max(T const &x, T const &y); }; // Specialization for float template <> struct rounded_arith { __device__ float add_down(const float &x, const float &y) { return __fadd_rd(x, y); } __device__ float add_up(const float &x, const float &y) { return __fadd_ru(x, y); } __device__ float sub_down(const float &x, const float &y) { return __fadd_rd(x, -y); } __device__ float sub_up(const float &x, const float &y) { return __fadd_ru(x, -y); } __device__ float mul_down(const float &x, const float &y) { return __fmul_rd(x, y); } __device__ float mul_up(const float &x, const float &y) { return __fmul_ru(x, y); } __device__ float div_down(const float &x, const float &y) { return __fdiv_rd(x, y); } __device__ float div_up(const float &x, const float &y) { return __fdiv_ru(x, y); } __device__ float median(const float &x, const float &y) { return (x + y) * .5f; } __device__ float sqrt_down(const float &x) { return __fsqrt_rd(x); } __device__ float sqrt_up(const float &x) { return __fsqrt_ru(x); } __device__ float int_down(const float &x) { return floorf(x); } __device__ float int_up(const float &x) { return ceilf(x); } __device__ float neg_inf() { return __int_as_float(0xff800000); } __device__ float pos_inf() { return __int_as_float(0x7f800000); } __device__ __host__ float nan() { return nanf(""); } __device__ float min(float const &x, float const &y) { return fminf(x, y); } __device__ float max(float const &x, float const &y) { return fmaxf(x, y); } }; // Specialization for double template <> struct rounded_arith { __device__ double add_down(const double &x, const double &y) { return __dadd_rd(x, y); } __device__ double add_up(const double &x, const double &y) { return __dadd_ru(x, y); } __device__ double sub_down(const double &x, const double &y) { return __dadd_rd(x, -y); } __device__ double sub_up(const double &x, const double &y) { return __dadd_ru(x, -y); } __device__ double mul_down(const double &x, const double &y) { return __dmul_rd(x, y); } __device__ double mul_up(const double &x, const double &y) { return __dmul_ru(x, y); } __device__ double div_down(const double &x, const double &y) { return __ddiv_rd(x, y); } __device__ double div_up(const double &x, const double &y) { return __ddiv_ru(x, y); } __device__ double median(const double &x, const double &y) { return (x + y) * .5; } __device__ double sqrt_down(const double &x) { return __dsqrt_rd(x); } __device__ double sqrt_up(const double &x) { return __dsqrt_ru(x); } __device__ double int_down(const double &x) { return floor(x); } __device__ double int_up(const double &x) { return ceil(x); } __device__ double neg_inf() { return __longlong_as_double(0xfff0000000000000ull); } __device__ double pos_inf() { return __longlong_as_double(0x7ff0000000000000ull); } __device__ __host__ double nan() { return ::nan(""); } __device__ double min(double const &x, double const &y) { return fmin(x, y); } __device__ double max(double const &x, double const &y) { return fmax(x, y); } }; #endif