/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /////////////////////////////////////////////////////////////////////////////// // Polynomial approximation of cumulative normal distribution function /////////////////////////////////////////////////////////////////////////////// __device__ inline float cndGPU(float d) { const float A1 = 0.31938153f; const float A2 = -0.356563782f; const float A3 = 1.781477937f; const float A4 = -1.821255978f; const float A5 = 1.330274429f; const float RSQRT2PI = 0.39894228040143267793994605993438f; float K = __fdividef(1.0f, (1.0f + 0.2316419f * fabsf(d))); float cnd = RSQRT2PI * __expf(-0.5f * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = 1.0f - cnd; return cnd; } /////////////////////////////////////////////////////////////////////////////// // Black-Scholes formula for both call and put /////////////////////////////////////////////////////////////////////////////// __device__ inline void BlackScholesBodyGPU(float &CallResult, float &PutResult, float S, // Stock price float X, // Option strike float T, // Option years float R, // Riskless rate float V // Volatility rate ) { float sqrtT, expRT; float d1, d2, CNDD1, CNDD2; sqrtT = __fdividef(1.0F, rsqrtf(T)); d1 = __fdividef(__logf(S / X) + (R + 0.5f * V * V) * T, V * sqrtT); d2 = d1 - V * sqrtT; CNDD1 = cndGPU(d1); CNDD2 = cndGPU(d2); // Calculate Call and Put simultaneously expRT = __expf(-R * T); CallResult = S * CNDD1 - X * expRT * CNDD2; PutResult = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1); } //////////////////////////////////////////////////////////////////////////////// // Process an array of optN options on GPU //////////////////////////////////////////////////////////////////////////////// extern "C" __launch_bounds__(128) __global__ void BlackScholesGPU(float2 *__restrict d_CallResult, float2 *__restrict d_PutResult, float2 *__restrict d_StockPrice, float2 *__restrict d_OptionStrike, float2 *__restrict d_OptionYears, float Riskfree, float Volatility, int optN) { ////Thread index const int opt = blockDim.x * blockIdx.x + threadIdx.x; // Calculating 2 options per thread to increase ILP (instruction level // parallelism) if (opt < (optN / 2)) { float callResult1, callResult2; float putResult1, putResult2; BlackScholesBodyGPU(callResult1, putResult1, d_StockPrice[opt].x, d_OptionStrike[opt].x, d_OptionYears[opt].x, Riskfree, Volatility); BlackScholesBodyGPU(callResult2, putResult2, d_StockPrice[opt].y, d_OptionStrike[opt].y, d_OptionYears[opt].y, Riskfree, Volatility); d_CallResult[opt] = make_float2(callResult1, callResult2); d_PutResult[opt] = make_float2(putResult1, putResult2); } }