/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include namespace cg = cooperative_groups; /////////////////////////////////////////////////////////////////////////////// // On G80-class hardware 24-bit multiplication takes 4 clocks per warp // (the same as for floating point multiplication and addition), // whereas full 32-bit multiplication takes 16 clocks per warp. // So if integer multiplication operands are guaranteed to fit into 24 bits // (always lie within [-8M, 8M - 1] range in signed case), // explicit 24-bit multiplication is preferred for performance. /////////////////////////////////////////////////////////////////////////////// #define IMUL(a, b) __mul24(a, b) /////////////////////////////////////////////////////////////////////////////// // Calculate scalar products of VectorN vectors of ElementN elements on GPU // Parameters restrictions: // 1) ElementN is strongly preferred to be a multiple of warp size to // meet alignment constraints of memory coalescing. // 2) ACCUM_N must be a power of two. /////////////////////////////////////////////////////////////////////////////// #define ACCUM_N 1024 __global__ void scalarProdGPU(float *d_C, float *d_A, float *d_B, int vectorN, int elementN) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); // Accumulators cache __shared__ float accumResult[ACCUM_N]; //////////////////////////////////////////////////////////////////////////// // Cycle through every pair of vectors, // taking into account that vector counts can be different // from total number of thread blocks //////////////////////////////////////////////////////////////////////////// for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x) { int vectorBase = IMUL(elementN, vec); int vectorEnd = vectorBase + elementN; //////////////////////////////////////////////////////////////////////// // Each accumulator cycles through vectors with // stride equal to number of total number of accumulators ACCUM_N // At this stage ACCUM_N is only preferred be a multiple of warp size // to meet memory coalescing alignment constraints. //////////////////////////////////////////////////////////////////////// for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x) { float sum = 0; for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N) sum += d_A[pos] * d_B[pos]; accumResult[iAccum] = sum; } //////////////////////////////////////////////////////////////////////// // Perform tree-like reduction of accumulators' results. // ACCUM_N has to be power of two at this stage //////////////////////////////////////////////////////////////////////// for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1) { cg::sync(cta); for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x) accumResult[iAccum] += accumResult[stride + iAccum]; } cg::sync(cta); if (threadIdx.x == 0) d_C[vec] = accumResult[0]; } }