/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include // CUDA FFT Libraries #include // Helper functions for CUDA Error handling // OpenGL Graphics includes #include // FluidsGLES CUDA kernel definitions #include "fluidsGLES_kernels.cuh" // Texture object for reading velocity field cudaTextureObject_t texObj; static cudaArray *array = NULL; // Particle data extern GLuint vbo; // OpenGL vertex buffer object extern struct cudaGraphicsResource *cuda_vbo_resource; // handles OpenGL-CUDA exchange // Texture pitch extern size_t tPitch; extern cufftHandle planr2c; extern cufftHandle planc2r; cData *vxfield = NULL; cData *vyfield = NULL; void setupTexture(int x, int y) { cudaChannelFormatDesc desc = cudaCreateChannelDesc(); cudaMallocArray(&array, &desc, y, x); getLastCudaError("cudaMalloc failed"); cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeArray; texRes.res.array.array = array; cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL)); } void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) { checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h, cudaMemcpyDeviceToDevice)); } void deleteTexture(void) { checkCudaErrors(cudaDestroyTextureObject(texObj)); checkCudaErrors(cudaFreeArray(array)); } // Note that these kernels are designed to work with arbitrary // domain sizes, not just domains that are multiples of the tile // size. Therefore, we have extra code that checks to make sure // a given thread location falls within the domain boundaries in // both X and Y. Also, the domain is covered by looping over // multiple elements in the Y direction, while there is a one-to-one // mapping between threads in X and the tile size in X. // Nolan Goodnight 9/22/06 // This method adds constant force vectors to the velocity field // stored in 'v' according to v(x,t+1) = v(x,t) + dt * f. __global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r, size_t pitch) { int tx = threadIdx.x; int ty = threadIdx.y; cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx; cData vterm = *fj; tx -= r; ty -= r; float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty); vterm.x += s * fx; vterm.y += s * fy; *fj = vterm; } // This method performs the velocity advection step, where we // trace velocity vectors back in time to update each grid cell. // That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear // interpolation in the velocity space. __global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, float dt, int lb, cudaTextureObject_t texObject) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; cData vterm, ploc; float vxterm, vyterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * pdx + gtidx; vterm = tex2D(texObject, (float)gtidx, (float)fi); ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx); ploc.y = (fi + 0.5f) - (dt * vterm.y * dy); vterm = tex2D(texObject, ploc.x, ploc.y); vxterm = vterm.x; vyterm = vterm.y; vx[fj] = vxterm; vy[fj] = vyterm; } } } } // This method performs velocity diffusion and forces mass conservation // in the frequency domain. The inputs 'vx' and 'vy' are complex-valued // arrays holding the Fourier coefficients of the velocity field in // X and Y. Diffusion in this space takes a simple form described as: // v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity, // and k is the wavenumber. The projection step forces the Fourier // velocity vectors to be orthogonal to the vectors for each // wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2. __global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt, float visc, int lb) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; cData xterm, yterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * dx + gtidx; xterm = vx[fj]; yterm = vy[fj]; // Compute the index of the wavenumber based on the // data order produced by a standard NN FFT. int iix = gtidx; int iiy = (fi > dy / 2) ? (fi - (dy)) : fi; // Velocity diffusion float kk = (float)(iix * iix + iiy * iiy); // k^2 float diff = 1.f / (1.f + visc * dt * kk); xterm.x *= diff; xterm.y *= diff; yterm.x *= diff; yterm.y *= diff; // Velocity projection if (kk > 0.f) { float rkk = 1.f / kk; // Real portion of velocity projection float rkp = (iix * xterm.x + iiy * yterm.x); // Imaginary portion of velocity projection float ikp = (iix * xterm.y + iiy * yterm.y); xterm.x -= rkk * rkp * iix; xterm.y -= rkk * ikp * iix; yterm.x -= rkk * rkp * iiy; yterm.y -= rkk * ikp * iiy; } vx[fj] = xterm; vy[fj] = yterm; } } } } // This method updates the velocity field 'v' using the two complex // arrays from the previous step: 'vx' and 'vy'. Here we scale the // real components by 1/(dx*dy) to account for an unnormalized FFT. __global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, int lb, size_t pitch) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; float vxterm, vyterm; cData nvterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fjr = fi * pdx + gtidx; vxterm = vx[fjr]; vyterm = vy[fjr]; // Normalize the result of the inverse FFT float scale = 1.f / (dx * dy); nvterm.x = vxterm * scale; nvterm.y = vyterm * scale; cData *fj = (cData *)((char *)v + fi * pitch) + gtidx; *fj = nvterm; } } // If this thread is inside the domain in Y } // If this thread is inside the domain in X } // This method updates the particles by moving particle positions // according to the velocity field and time step. That is, for each // particle: p(t+1) = p(t) + dt * v(p(t)). __global__ void advectParticles_k(cData *part, cData *v, int dx, int dy, float dt, int lb, size_t pitch) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; // gtidx is the domain location in x for this thread cData pterm, vterm; if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * dx + gtidx; pterm = part[fj]; int xvi = ((int)(pterm.x * dx)); int yvi = ((int)(pterm.y * dy)); vterm = *((cData *)((char *)v + yvi * pitch) + xvi); pterm.x += dt * vterm.x; pterm.x = pterm.x - (int)pterm.x; pterm.x += 1.f; pterm.x = pterm.x - (int)pterm.x; pterm.y += dt * vterm.y; pterm.y = pterm.y - (int)pterm.y; pterm.y += 1.f; pterm.y = pterm.y - (int)pterm.y; part[fj] = pterm; } } // If this thread is inside the domain in Y } // If this thread is inside the domain in X } // These are the external function calls necessary for launching fluid simuation extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r) { dim3 tids(2 * r + 1, 2 * r + 1); addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch); getLastCudaError("addForces_k failed."); } extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx, int dy, float dt) { dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1), (dy / TILEY) + (!(dy % TILEY) ? 0 : 1)); dim3 tids(TIDSX, TIDSY); updateTexture(v, DIM * sizeof(cData), DIM, tPitch); advectVelocity_k<<>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY, texObj); getLastCudaError("advectVelocity_k failed."); } extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt, float visc) { // Forward FFT checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vx, (cufftComplex *)vx)); checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vy, (cufftComplex *)vy)); uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1), (dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1); uint3 tids = make_uint3(TIDSX, TIDSY, 1); diffuseProject_k<<>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY); getLastCudaError("diffuseProject_k failed."); // Inverse FFT checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vx, (cufftReal *)vx)); checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vy, (cufftReal *)vy)); } extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx, int dy) { dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1), (dy / TILEY) + (!(dy % TILEY) ? 0 : 1)); dim3 tids(TIDSX, TIDSY); updateVelocity_k<<>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY, tPitch); getLastCudaError("updateVelocity_k failed."); } extern "C" void advectParticles(GLuint vbo, cData *v, int dx, int dy, float dt) { dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1), (dy / TILEY) + (!(dy % TILEY) ? 0 : 1)); dim3 tids(TIDSX, TIDSY); cData *p; checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0)); getLastCudaError("cudaGraphicsMapResources failed"); size_t num_bytes; checkCudaErrors(cudaGraphicsResourceGetMappedPointer((void **)&p, &num_bytes, cuda_vbo_resource)); getLastCudaError("cudaGraphicsResourceGetMappedPointer failed"); advectParticles_k<<>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch); getLastCudaError("advectParticles_k failed."); checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0)); }