31.1

Chapter 31

Fast N-Body Simulation
with CUDA

Lars Nyland
NVIDIA Corporation

Mark Harris
NVIDIA Corporation

Jan Prins
University of North Carolina at Chapel Hill

Introduction

An N-body simulation numerically approximates the evolution of a system of bodies in
which each body continuously interacts with every other body. A familiar example is an
astrophysical simulation in which each body represents a galaxy or an individual star, and
the bodies attract each other through the gravitational force, as in Figure 31-1. N-body
simulation arises in many other computational science problems as well. For example,
protein folding is studied using N-body simulation to calculate electrostatic and van der
Waals forces. Turbulent fluid flow simulation and global illumination computation in
computer graphics are other examples of problems that use N-body simulation.

The all-pairs approach to N-body simulation is a brute-force technique that evaluates
all pair-wise interactions among the NV bodies. It is a relatively simple method, but one
that is not generally used on its own in the simulation of large systems because of its
O(N?) computational complexity. Instead, the all-pairs approach is typically used as a
kernel to determine the forces in close-range interactions. The all-pairs method is com-
bined with a faster method based on a far-field approximation of longer-range forces,
which is valid only between parts of the system that are well separated. Fast N-body

31.1 Introduction 677

678

Figure 31-1. Frames from an Interactive 3D Rendering of a 16,384-Body System Simulated by Our
Application

We compute more than 10 billion gravitational forces per second on an NVIDIA Geforce 8800 GTX
GPU, which is more than 50 times the performance of a highly tuned CPU implementation.

algorithms of this form include the Barnes-Hut method (BH) (Barnes and Hut 1986),
the fast multipole method (FMM) (Greengard 1987), and the particle-mesh methods
(Hockney and Eastwood 1981, Darden et al. 1993).

The all-pairs component of the algorithms just mentioned requires substantial time to
compute and is therefore an interesting target for acceleration. Improving the perform-
ance of the all-pairs component will also improve the performance of the far-field com-
ponent as well, because the balance between far-field and near-field (all-pairs) can be
shifted to assign more work to a faster all-pairs component. Accelerating one compo-
nent will offload work from the other components, so the entire application benefits
from accelerating one kernel.

Chapter 31 Fast N-Body Simulation with CUDA

31.2

In this chapter, we focus on the all-pairs computational kernel and its implementation
using the NVIDIA CUDA programming model. We show how the parallelism avail-
able in the all-pairs computational kernel can be expressed in the CUDA model and
how various parameters can be chosen to effectively engage the full resources of the
NVIDIA GeForce 8800 GTX GPU. We report on the performance of the all-pairs
N-body kernel for astrophysical simulations, demonstrating several optimizations that
improve performance. For this problem, the GeForce 8800 GTX calculates more than
10 billion interactions per second with N = 16,384, performing 38 integration time
steps per second. At 20 flops per interaction, this corresponds to a sustained perform-

ance in excess of 200 gigaflops. This result is close to the theoretical peak performance
of the GeForce 8800 GTX GPU.

All-Pairs N-Body Simulation

We use the gravitational potential to illustrate the basic form of computation in an all-
pairs N-body simulation. In the following computation, we use bold font to signify
vectors (typically in 3D). Given NN bodies with an initial position x; and velocity v; for
1 <7< N, the force vector f,-]- on body 7 caused by its gravitational attraction to body j
is given by the following:

N

S T
[l T

where m; and mj are the masses of bodies 7 and j, respectively; r;=X; — X; i the vector

from body 7 to body j; and G is the gravitational constant. The left factor, the magni-

tude of the force, is proportional to the product of the masses and diminishes with the
square of the distance between bodies 7 and j. The right factor is the direction of the
force, a unit vector from body 7 in the direction of body j (because gravitation is an
attractive force).

The total force F; on body 7, due to its interactions with the other V — 1 bodies, is
obtained by summing all interactions:
m.r

E = Zfi/:Gmi‘ Z#

.
ST

J=i J=i

31.2 All-Pairs N-Body Simulation 679

31.3

680

As bodies approach each other, the force between them grows without bound, which is
an undesirable situation for numerical integration. In astrophysical simulations, colli-
sions between bodies are generally precluded; this is reasonable if the bodies represent
galaxies that may pass right through each other. Therefore, a softening factor ¢ > 0 is
added, and the denominator is rewritten as follows:

m.

Z " Iggg:N (”r "2 4 g)%

i
Note the condition j = 7 is no longer needed in the sum, because f;; = 0 when ¢* > 0.
The softening factor models the interaction between two Plummer point masses:
masses that behave as if they were spherical galaxies (Aarseth 2003, Dyer and Ip 1993).

In effect, the softening factor limits the magnitude of the force between the bodies,
which is desirable for numerical integration of the system state.

To integrate over time, we need the acceleration a; = F;/m; to update the position and
velocity of body 7, and so we simplify the computation to this:

a, ~G- Z ij—rlja/
1<j<N ("fl]” i 62) 2

The integrator used to update the positions and velocities is a leapfrog-Verlet integrator
(Verlet 1967) because it is applicable to this problem and is computationally efficient
(it has a high ratio of accuracy to computational cost). The choice of integration
method in N-body problems usually depends on the nature of the system being stud-
ied. The integrator is included in our timings, but discussion of its implementation is
omitted because its complexity is O(/V) and its cost becomes insignificant as NV grows.

A CUDA Implementation of the All-Pairs N-Body
Algorithm

We may think of the all-pairs algorithm as calculating each entry f; in an Nx/V grid of
all pair-wise forces.! Then the total force F; (or acceleration a;) on body 7 is obtained
from the sum of all entries in row 7. Each entry can be computed independently, so
there is O(/V?) available parallelism. However, this approach requires O(/V?) memory

1. The relation between reciprocal forces f;.l. = ffl.] can be used to reduce the number of force evaluations
by a factor of two, but this optimization has an adverse effect on parallel evaluation strategies (especially
with small V), so it is not employed in our implementation.

Chapter 31 Fast N-Body Simulation with CUDA

31.3.1

and would be substantially limited by memory bandwidth. Instead, we serialize some of
the computations to achieve the data reuse needed to reach peak performance of the
arithmetic units and to reduce the memory bandwidth required.

Consequently, we introduce the notion of a computational #ile, a square region of the
grid of pair-wise forces consisting of p rows and p columns. Only 2p body descriptions
are required to evaluate all p* interactions in the tile (p of which can be reused later).
These body descriptions can be stored in shared memory or in registers. The total effect
of the interactions in the tile on the p bodies is captured as an update to p acceleration
vectors.

To achieve optimal reuse of data, we arrange the computation of a tile so that the inter-
actions in each row are evaluated in sequential order, updating the acceleration vector,
while the separate rows are evaluated in parallel. In Figure 31-2, the diagram on the left
shows the evaluation strategy, and the diagram on the right shows the inputs and out-
puts for a tile computation.

In the remainder of this section, we follow a bottom-up presentation of the full compu-
tation, packaging the available parallelism and utilizing the appropriate local memory
at each level.

Sequential P Body .
- 5 Descriptions
p Body -
T oo Descriptions [l [*"1>
5| & R . s et .
5| [&f--[--]> o[>
o P I B p Accelerations ol----1»| P Updated

Accelerations

Figure 31-2. A Schematic Figure of a Computational Tile
Left: Evaluation order. Right: Inputs needed and outputs produced for the p? interactions
calculated in the tile.

Body-Body Force Calculation

The interaction between a pair of bodies as described in Section 31.2 is implemented as
an entirely serial computation. The code in Listing 31-1 computes the force on body 7
from its interaction with body j and updates acceleration a; of body 7 as a result of this
interaction. There are 20 floating-point operations in this code, counting the additions,
multiplications, the sqrt £ () call, and the division (or reciprocal).

31.3 A CUDA Implementation of the All-Pairs N-Body Algorithm 681

31.3.2

682

Listing 31-1. Updating Acceleration of One Body as a Result of Its Interaction with Another Body

__device float3
bodyBodyInteraction (float4 bi, float4 bj, float3 ai)

{

float3 r;

r.x = bj.x - bi.x;
r.y = bj.y - bi.y;
r.z = bj.z - bi.z;

float distSqr = r.x * r.x + r.y * r.y + r.z * r.z + EPS2;

float distSixth = distSqr * distSqr * distSqr;
float invDistCube = 1.0f/sqrtf(distSixth);

float s

bj.w * invDistCube;

ai.x += r.x * s;
ai.y += r.y * s;
ai.z +=r.z * s;

ai;

We use CUDA’s £1oat4 data type for body descriptions and accelerations stored in
GPU device memory. We store each body’s mass in the w field of the body’s £10at4
position. Using £loat4 (instead of £loat3) data allows coalesced memory access to
the arrays of data in device memory, resulting in efficient memory requests and trans-
fers. (See the CUDA Programming Guide (NVIDIA 2007) for details on coalescing
memory requests.) Three-dimensional vectors stored in local variables are stored as
float3 variables, because register space is an issue and coalesced access is not.

Tile Calculation

A tile is evaluated by p threads performing the same sequence of operations on different
data. Each thread updates the acceleration of one body as a result of its interaction with

Chapter 31 Fast N-Body Simulation with CUDA

31.3.3

p other bodies. We load p body descriptions from the GPU device memory into the
shared memory provided to each thread block in the CUDA model. Each thread in the
block evaluates p successive interactions. The result of the tile calculation is p updated
accelerations.

The code for the tile calculation is shown in Listing 31-2. The input parameter
myPosition holds the position of the body for the executing thread, and the array
shPosition is an array of body descriptions in shared memory. Recall that p threads
execute the function body in parallel, and each thread iterates over the same p bodies,
computing the acceleration of its individual body as a result of interaction with p other

bodies.

Listing 31-2. Evaluating Interactions in a pxp Tile

__device float3
tile calculation(float4 myPosition, float3 accel)
{

int i;

extern shared float4[] shPosition;

for (1 = 0; i < blockDim.x; i++) {
accel = bodyBodyInteraction (myPosition, shPosition[i], accel);

}

return accel;

The G80 GPU architecture supports concurrent reads from multiple threads to a single
shared memory address, so there are no shared-memory-bank conflicts in the evalua-
tion of interactions. (Refer to the CUDA Programming Guide (NVIDIA 2007) for de-
tails on the shared memory broadcast mechanism used here.)

Clustering Tiles into Thread Blocks

We define a thread block as having p threads that execute some number of tiles in
sequence. Tiles are sized to balance parallelism with data reuse. The degree of parallelism
(that is, the number of rows) must be sufficiently large so that multiple warps can be
interleaved to hide latencies in the evaluation of interactions. The amount of data reuse
grows with the number of columns, and this parameter also governs the size of the trans-
fer of bodies from device memory into shared memory. Finally, the size of the tile also
determines the register space and shared memory required. For this implementation, we

31.3 A CUDA Implementation of the All-Pairs N-Body Algorithm 683

have used square tiles of size p by p. Before executing a tile, each thread fetches one body
into shared memory, after which the threads synchronize. Consequently, each tile starts
with p successive bodies in the shared memory.

Figure 31-3 shows a thread block that is executing code for multiple tiles. Time spans
the horizontal direction, while parallelism spans the vertical direction. The heavy lines
demarcate the tiles of computation, showing where shared memory is loaded and a
barrier synchronization is performed. In a thread block, there are V/p tiles, with p
threads computing the forces on p bodies (one thread per body). Each thread computes
all V interactions for one body.

Time

Parallelism
AL AE 2K 4

Y| V|(V|VY

Load shared memory and
synchronize at these points

Figure 31-3. The CUDA Kernel of Pair-Wise Forces to Calculate
Multiple threads work from left to right, synchronizing at the end of each tile of computation.

The code to calculate N-body forces for a thread block is shown in Listing 31-3. This
code is the CUDA kernel that is called from the host.

The parameters to the function calculate_forces () are pointers to global device
memory for the positions devX and the accelerations deva of the bodies. We assign
them to local pointers with type conversion so they can be indexed as arrays. The loop
over the tiles requires two synchronization points. The first synchronization ensures
that all shared memory locations are populated before the gravitation computation
proceeds, and the second ensures that all threads finish their gravitation computation
before advancing to the next tile. Without the second synchronization, threads that
finish their part in the tile calculation might overwrite the shared memory still being
read by other threads.

684 Chapter 31 Fast N-Body Simulation with CUDA

Listing 31-3. The CUDA Kernel Executed by a Thread Block with p Threads to Compute the
Gravitational Acceleration for p Bodies as a Result of All N Interactions

__global wvoid
calculate forces(void *devX, void *devA)

{

extern shared float4[] shPosition;

float4 *globalX = (float4 *)devX;

float4 *globalA = (float4 *)devA;

float4 myPosition;

int i, tile;

float3 acc = {0.0f, 0.0f, 0.0f};

int gtid = blockIdx.x * blockDim.x + threadIdx.x;

myPosition = globalX([gtid];

for (1 = 0, tile = 0; 1 < N; i += p, tile++) {
int idx = tile * blockDim.x + threadIdx.x;
shPosition[threadIdx.x] = globalX[idx];
___syncthreads () ;
acc = tile calculation(myPosition, acc);
___syncthreads() ;

}

float4 acc4 = {acc.x, acc.y, acc.z, 0.0f};
globalA[gtid] = acc4;

31.3.4 Defining a Grid of Thread Blocks

The kernel program in Listing 31-3 calculates the acceleration of p bodies in a system,
caused by their interaction with all /Vbodies in the system. We invoke this program on
a grid of thread blocks to compute the acceleration of all /Vbodies. Because there are p
threads per block and one thread per body, the number of thread blocks needed to
complete all N bodies is V/p, so we define a 1D grid of size N/p. The result is a total of
N threads that perform /V force calculations each, for a total of NV* interactions.

Evaluation of the full grid of interactions can be visualized as shown in Figure 31-4.
The vertical dimension shows the parallelism of the 1D grid of V/p independent

31.3 A CUDA Implementation of the All-Pairs N-Body Algorithm 685

thread blocks with p threads each. The horizontal dimension shows the sequential pro-
cessing of IV force calculations in each thread. A thread block reloads its shared memory
every p steps to share p positions of data.

N Bodies

¥

p Threads

olefele

N/p Blocks

olelele
1525251525252 | KARAEAL:

LK AK 2K J

>
p steps between
loads from global memory

Figure 31-4. The Grid of Thread Blocks That Calculates All N2 Forces
Here there are four thread blocks with four threads each.

31.4 Performance Results

By simply looking at the clocks and capacities of the GeForce 8800 GTX GPU, we ob-
serve that it is capable of 172.8 gigaflops (128 processors, 1.35 GHz each, one floating-
point operation completed per cycle per processor). Multiply-add instructions (MADs)
perform two floating-point operations every clock cycle, doubling the potential perform-
ance. Fortunately, the N-body code has several instances where MAD instructions are
generated by the compiler, raising the performance ceiling well over 172.8 gigaflops.

Conversely, complex instructions such as inverse square root require multiple clock

cycles. The CUDA Programming Guide (NVIDIA 2007) says to expect 16 clock cycles

686 Chapter 31 Fast N-Body Simulation with CUDA

31.4.1

per warp of 32 threads, or four times the amount of time required for the simpler oper-
ations. Our code uses one inverse-square-root instruction per interaction.

When comparing gigaflop rates, we simply count the floating-point operations listed in
the high-level code. By counting the floating-point operations in the bodyBody -
Interaction code (Listing 31-1), we see nine additions, nine multiplications, one
square root, and one division. Division and square root clearly require more time than
addition or multiplication, and yet we still assign a cost of 1 flop each,? yielding a total
of 20 floating-point operations per pair-wise force calculation. This value is used
throughout the chapter to compute gigaflops from interactions per second.

Optimization
Our first implementation achieved 163 gigaflops for 16,384 bodies. This is an excellent
result, but there are some optimizations we can use that will increase the performance.

Performance Increase with Loop Unrolling

The first improvement comes from loop unrolling, where we replace a single body-body
interaction call in the inner loop with 2 to 32 calls to reduce loop overhead. A chart of
performance for small unrolling factors is shown in Figure 31-5.

We examined the code generated by the CUDA compiler for code unrolled with 4
successive calls to the body-body interaction function. It contains 60 instructions for
the 4 in-lined calls. Of the 60 instructions, 56 are floating-point instructions, contain-
ing 20 multiply-add instructions and 4 inverse-square-root instructions. Our best hope
is that the loop will require 52 cycles for the non-inverse-square-root floating-point
instructions, 16 cycles for the 4 inverse-square-root instructions, and 4 cycles for the
loop control, totaling 72 cycles to perform 80 floating-point operations.

If this performance is achieved, the G80 GPU will perform approximately 10 billion
body-body interactions per second (128 processors at 1350 MHz, computing 4 body-
body interactions in 72 clock cycles), or more than 200 gigaflops. This is indeed the
performance we observe for V> 8192, as shown in Figure 31-6.

2. Although we count 1.0/sgrt (x) as two floating-point operations, it may also be assumed to be a
single operation called “rsqrt () ” (Elsen et al. 2006). Doing so reduces the flop count per interaction to
19 instead of 20. Some researchers use a flop count of 38 for the interaction (Hamada and Iitaka 2007);
this is an arbitrary conversion based on an historical estimate of the running time equivalent in flops of
square root and reciprocal. It bears no relation to the actual number of floating-point operations.

31.4 Performance Results 687

250 —

196 204 === N=16K
200 — 184 e —]
— = —l == N=4K
9 150 — 163 == N=1K
&
100 = = 3
926 100 102
50 —
0 L L J
1 2 4

Unroll Count

Figure 31-5. Performance Increase with Loop Unrolling

This graph shows the effect of unrolling a loop by replicating the body of the loop 1, 2, and 4 times
for simulations with 1024, 4096, and 16,384 bodies. The performance increases, as does register
usage, until the level of multiprogramming drops with an unrolling factor of 8.

250

200 204

200 189

150

GFLOPS

100

50

1024 1538 2048 3072 4096 6144 8192 12288 16384
N

Figure 31-6. Performance Increase as N Grows

This graph shows observed gigaflop rates for varying problem sizes, where each pair-wise force
calculation is considered to require 20 floating-point operations. There are evident inefficiencies
when N < 4096, but performance is consistently high for N > 4096.

Performance Increase as Block Size Varies

Another performance-tuning parameter is the value of p, the size of the tile. The total
memory fetched by the program is N2/p for each integration time step of the algo-
rithm, so increasing p decreases memory traffic. There are 16 multiprocessors on the

688

Chapter 31 Fast N-Body Simulation with CUDA

GeForce 8800 GTX GPU, so p cannot be arbitrarily large; it must remain small
enough so that N/p is 16 or larger. Otherwise, some multiprocessors will be idle.

Another reason to keep p small is the concurrent assignment of thread blocks to multi-
processors. When a thread block uses only a portion of the resources on a multiprocessor
(such as registers, thread slots, and shared memory), multiple thread blocks are placed on
each multiprocessor. This technique provides more opportunity for the hardware to hide
latencies of pipelined instruction execution and memory fetches. Figure 31-7 shows how
the performance changes as p is varied for V= 1024, 4096, and 16,384.

Improving Performance for Small N

A final optimization that we implemented—using multiple threads per body—
attempts to improve performance for /V < 4096. As N decreases, there is not enough
work with one thread per body to adequately cover all the latencies in the GeForce
8800 GTX GPU, so performance drops rapidly. We therefore increase the number of
active threads by using multiple threads on each row of a body’s force calculation. If the
additional threads are part of the same thread block, then the number of memory re-
quests increases, as does the number of warps, so the latencies begin to be covered
again. Our current register use limits the number of threads per block to 256 on the
8800 GTX GPU (blocks of 512 threads fail to run), so we split each row into ¢ seg-
ments, keeping p x g < 256.

250
196 200 204 N=16K
200] 187
» = —T] =i N=4K
o 180
& o 126 169 174 176 —8— N=1K
G
100 108
. +
85 88 1
50 67
40
0 L L L L J
16 32 64 128 256
Block Size

Figure 31-7. Performance as Block Size Varies

This graph shows how performance changes as the tile size p changes, for N = 1024, 4096, and
16,384. Larger tiles lead to better performance, as long as all 16 multiprocessors are in use, which
explains the decline for N = 1024.

31.4 Performance Results 689

31.4.2

690

Splitting the rows has the expected benefit. Using two threads to divide the work in-
creased performance for NV = 1024 by 44 percent. The improvement rapidly diminishes
when splitting the work further. And of course, for V> 4096, splitting had almost no
effect, because the code is running at nearly peak performance. Fortunately, splitting
did not reduce performance for large /V. Figure 31-8 shows a graph demonstrating the
performance gains.

200 -
180 4 Threads

160 48 2 Threads
140 -

120 1 Thread

100 12
80 28
60

37

GFLOPS

166

127

40 o1

63
20

0]]])
1024 1536 2048 3072

N

Figure 31-8. Performance Increase by Using Multiple Threads per Body

This chart demonstrates that adding more threads to problems of small N improves performance.
When the total force on one body is computed by two threads instead of one, performance
increases by as much as 44 percent. Using more than four threads per body provides no additional
performance gains.

Analysis of Performance Results

When we judge the performance gain of moving to the GeForce 8800 GTX GPU, the
most surprising and satisfying result is the speedup of the N-body algorithm compared
to its performance on a CPU. The performance is much larger than the comparison of
peak floating-point rates between the GeForce 8800 GTX GPU and Intel processors.
We speculate that the main reason for this gain is that Intel processors require dozens of
unpipelined clock cycles for the division and square root operations, whereas the GPU
has a single instruction that performs an inverse square root. Intel’s Streaming SIMD
Extensions (SSE) instruction set includes a four-clock-cycle 1/sqrt(x) instruction (vec-

Chapter 31 Fast N-Body Simulation with CUDA

315

tor and scalar), but the accuracy is limited to 12 bits. In a technical report from Intel
(Intel 1999), a method is proposed to increase the accuracy over a limited domain, but
the cost is estimated to be 16 clock cycles.

Previous Methods Using GPUs for N-Body Simulation
The N-body problem has been studied throughout the history of computing. In the

1980s several hierarchical and mesh-style algorithms were introduced, successfully re-
ducing the O(V?) complexity. The parallelism of the N-body problem has also been
studied as long as there have been parallel computers. We limit our review to previous
work that pertains to achieving high performance using GPU hardware.

In 2004 we built an N-body application for GPUs by using Cg and OpenGL (Nyland,
Harris, and Prins 2004). Although Cg presented a more powerful GPU programming
language than had previously been available, we faced several drawbacks to building the
application in a graphics environment. All data were either read-only or write-only, so a
double-buffering scheme had to be used. All computations were initiated by drawing a
rectangle whose pixel values were computed by a shader program, requiring O(/N?)
memory. Because of the difficulty of programming complex algorithms in the graphics
API, we performed simple brute-force computation of all pair-wise accelerations into a
single large texture, followed by a parallel sum reduction to get the vector of total accel-
erations. This sum reduction was completely bandwidth bound because of the lack of
on-chip shared memory. The maximum texture-size limitation of the GPU limited the
largest number of bodies we could handle (at once) to 2048. Using an out-of-core
method allowed us to surpass that limit.

A group at Stanford University (Elsen et al. 20006) created an N-body solution similar to
the one described in this chapter, using the BrookGPU programming language (Buck et
al. 2004), gathering performance data from execution on an ATI X1900 XTX GPU.
They concluded that loop unrolling significantly improves performance. They also con-
cluded that achieving good performance when /V < 4096 is difficult and suggest a simi-
lar solution to ours, achieving similar improvement. The Stanford University group
compares their GPU implementation to a highly tuned CPU implementation (SSE
assembly language that achieves 3.8 gigaflops, a performance metric we cannot match)
and observe the GPU outperforming the CPU by a factor of 25. They provide code
(written in BrookGPU) and analyze what the code and the hardware are doing. The

31.5 Previous Methods Using GPUs for N-Body Simulation 691

31.6

692

GPU hardware they used achieves nearly 100 gigaflops. They also remind us that the
CPU does half the number of force calculations of the GPU by using the symmetry
of f; = —f,.

1] J?

Since the release of the GeForce 8800 GTX GPU and CUDA, several implementations
of N-body applications have appeared. Two that caught our attention are Hamada and
litaka 2007 and Portegies Zwart et al. 2007. Both implementations mimic the Gravity
Pipe (GRAPE) hardware (Makino et al. 2000), suggesting that the GeForce 8800 GTX
GPU replace the GRAPE custom hardware. Their N-body method uses a multiple
time-step scheme, with integration steps occurring at different times for different bod-
ies, so the comparison with these two methods can only be done by comparing the
number of pair-wise force interactions per second. We believe that the performance we
have achieved is nearly two times greater than the performance of the cited works.

Hierarchical N-Body Methods

Many practical N-body applications use a hierarchical approach, recursively dividing
the space into subregions until some criterion is met (for example, that the space con-
tains fewer than 4 bodies). For interactions within a leaf cell, the all-pairs method is
used, usually along with one or more layers of neighboring leaf cells. For interactions
with subspaces farther away, far-field approximations are used. Popular hierarchical
methods are Barnes-Hut (Barnes and Hut 1986) and Greengard’s fast multipole
method (Greengard 1987, Greengard and Huang 2002).

Both algorithms must choose how to interact with remote leaf cells. The general result
is that many body-cell or cell-cell interactions require an all-pairs solution to calculate
the forces. The savings in the algorithm comes from the use of a multipole expansion of
the potential due to bodies at a distance, rather than from interactions with the individ-
ual bodies at a distance.

As an example in 3D, consider a simulation of 2'® bodies (256 K), decomposed into a
depth-3 octree containing 512 leaf cells with 512 bodies each. The minimum neigh-
borhood of cells one layer deep will contain 27 leaf cells, but probably many more will
be used. For each leaf cell, there are at least 27 x 512 x 512 pair-wise force interactions
to compute. That yields more than 7 million interactions per leaf cell, which in our
implementation would require less than 1 millisecond of computation to solve. The
total time required for all 512 leaf cells would be less than a half-second.

Chapter 31 Fast N-Body Simulation with CUDA

31.7

Contrast this with our all-pairs implementation® on an Intel Core 2 Duo* that achieves
about 20 million interactions per second. The estimated time for the same calculation
is about 90 seconds (don’t forget that the CPU calculates only half as many pair-wise
interactions). Even the high-performance implementations that compute 100 million
interactions per second require 18 seconds. One way to alleviate the load is to deepen
the hierarchical decomposition and rely more on the far-field approximations, so that
the leaf cells would be populated with fewer particles. Of course, the deeper tree means
more work in the far-field segment.

We believe that the savings of moving from the CPU to the GPU will come not only
from the increased computational horsepower, but also from the increased size of the
leaf cells, making the hierarchical decomposition shallower, saving time in the far-field
evaluation as well. In future work we hope to implement the BH or FMM algorithms,
to evaluate the savings of more-efficient algorithms.

Conclusion

It is difficult to imagine a real-world algorithm that is better suited to execution on the
G80 architecture than the all-pairs N-body algorithm. In this chapter we have demon-
strated three features of the algorithm that help it achieve such high efficiency:

o Straightforward parallelism with sequential memory access patterns
« Data reuse that keeps the arithmetic units busy

o Fully pipelined arithmetic, including complex operations such as inverse square root,

that are much faster clock-for-clock on a GeForce 8800 GTX GPU than on a CPU

The result is an algorithm that runs more than 50 times as fast as a highly tuned serial
implementation (Elsen et al. 2006) or 250 times faster than our portable C implemen-
tation. At this performance level, 3D simulations with large numbers of particles can be
run interactively, providing 3D visualizations of gravitational, electrostatic, or other
mutual-force systems.

3. Our implementation is single-threaded, does not use any SSE instructions, and is compiled with gcc.
Other specialized N-body implementations on Intel processors achieve 100 million interactions a second
(Elsen et al. 20006).

4. Intel Core 2 Duo 6300 CPU at 1.87 GHz with 2.00 GB of RAM.

31.7 Conclusion 693

31.8 References

694

Aarseth, S. 2003. Gravitational N-Body Simulations. Cambridge University Press.

Barnes, J., and P. Hut. 1986. “A Hierarchical O(n log n) Force Calculation Algorithm.”
Nature 324.

Buck, L., T. Foley, D. Horn,]J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
2004. “Brook for GPUs: Stream Computing on Graphics Hardware.”
In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23(3).

Darden, T., D. York, and L. Pederson. 1993. “Particle Mesh Ewald: An N log(N)
Method for Ewald Sums in Large Systems.” Journal of Chemical Physics 98(12),

p. 10089.

Dehnen, Walter. 2001. “Towards Optimal Softening in 3D N-body Codes: I. Minimiz-
ing the Force Error.” Monthly Notices of the Royal Astronomical Society 324, p. 273.

Dyer, Charles, and Peter Ip. 1993. “Softening in N-Body Simulations of Collisionless
Systems.” The Astrophysical Journal 409, pp. 60-67.

Elsen, Erich, Mike Houston, V. Vishal, Eric Darve, Pat Hanrahan, and Vijay Pande.
2006. “N-Body Simulation on GPUs.” Poster presentation. Supercomputing 06
Conference.

Greengard, L. 1987. The Rapid Evaluation of Potential Fields in Particle Systems. ACM
Press.

Greengard, Leslie F, and Jingfang Huang. 2002. “A New Version of the Fast Multipole
Method for Screened Coulomb Interactions in Three Dimensions.” Journal of Com-
putational Physics 180(2), pp. 642—658.

Hamada, T., and T. litaka. 2007. “The Chamomile Scheme: An Optimized Algorithm
for N-body Simulations on Programmable Graphics Processing Units.” ArXiv Astro-
physics e-prints, astro-ph/0703100, March 2007.

Hockney, R., and J. Eastwood. 1981. Computer Simulation Using Particles. McGraw-Hill.

Intel Corporation. 1999. “Increasing the Accuracy of the Results from the Reciprocal
and Reciprocal Square Root Instructions Using the Newton-Raphson Method.”
Version 2.1. Order Number: 243637-002. Available online at
http://cache-www.intel.com/cd/00/00/04/10/41007 _nrmethod.pdf.

Intel Corporation. 2003. Intel Pentium 4 and Intel Xeon Processor Optimization Reference
Manual. Order Number: 248966-007.

Chapter 31 Fast N-Body Simulation with CUDA

Johnson, Vicki, and Alper Ates. 2005. “NBodyLab Simulation Experiments with
GRAPE-6a and MD-GRAPE2 Acceleration.” Astronomical Data Analysis Software
and Systems XIV P3-1-6, ASP Conference Series, Vol. XXX, P. L. Shopbell, M. C.
Britton, and R. Ebert, eds. Available online at
http://nbodylab.interconnect.com/docs/P3.1.6_revised.pdf.

Makino, J., T. Fukushige, and M. Koga. 2000. “A 1.349 Tflops Simulation of Black
Holes in a Galactic Center on GRAPE-6.” In Proceedings of the 2000 ACM/IEEE

Conference on Supercomputing.

NVIDIA Corporation. 2007. NVIDIA CUDA Compute Unified Device Architecture
Programming Guide. Version 0.8.1.

Nyland, Lars, Mark Harris, and Jan Prins. 2004. “The Rapid Evaluation of Potential
Fields Using Programmable Graphics Hardware.” Poster presentation at GP?, the
ACM Workshop on General Purpose Computing on Graphics Hardware.

Portegies Zwart, S., R. Belleman, and P. Geldof. 2007. “High Performance Direct
Gravitational N-body Simulations on Graphics Processing Unit.” ArXiv Astrophysics
e-prints, astro-ph/0702058, Feb. 2007.

Verlet, J. 1967. “Computer Experiments on Classical Fluids.” Physical Review 159(1),
pp- 98-103.

31.8 References 695

Edited by Hubert Nguyen
nvibia Foreword by Kurt Akeley

® Full color, hard cover, $69.99

® Experts from industry and
universities

® Available for purchase online

For more information, please visit:
http://developer.nvidia.com/gpugems3

http://developer.nvidia.com/gpugems3

