/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Template project which demonstrates the basics on how to setup a project * example application. * Host code. */ // includes, system #include #include #include #include // includes CUDA #include // includes, project #include #include // helper functions for SDK examples //////////////////////////////////////////////////////////////////////////////// // declaration, forward void runTest(int argc, char **argv); extern "C" void computeGold(float *reference, float *idata, const unsigned int len); //////////////////////////////////////////////////////////////////////////////// //! Simple test kernel for device functionality //! @param g_idata input data in global memory //! @param g_odata output data in global memory //////////////////////////////////////////////////////////////////////////////// __global__ void testKernel(float *g_idata, float *g_odata) { // shared memory // the size is determined by the host application extern __shared__ float sdata[]; // access thread id const unsigned int tid = threadIdx.x; // access number of threads in this block const unsigned int num_threads = blockDim.x; // read in input data from global memory sdata[tid] = g_idata[tid]; __syncthreads(); // perform some computations sdata[tid] = (float)num_threads * sdata[tid]; __syncthreads(); // write data to global memory g_odata[tid] = sdata[tid]; } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { runTest(argc, argv); } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// void runTest(int argc, char **argv) { bool bTestResult = true; printf("%s Starting...\n\n", argv[0]); // use command-line specified CUDA device, otherwise use device with highest // Gflops/s int devID = findCudaDevice(argc, (const char **)argv); StopWatchInterface *timer = 0; sdkCreateTimer(&timer); sdkStartTimer(&timer); unsigned int num_threads = 32; unsigned int mem_size = sizeof(float) * num_threads; // allocate host memory float *h_idata = (float *)malloc(mem_size); // initalize the memory for (unsigned int i = 0; i < num_threads; ++i) { h_idata[i] = (float)i; } // allocate device memory float *d_idata; checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size)); // copy host memory to device checkCudaErrors( cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice)); // allocate device memory for result float *d_odata; checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size)); // setup execution parameters dim3 grid(1, 1, 1); dim3 threads(num_threads, 1, 1); // execute the kernel testKernel<<>>(d_idata, d_odata); // check if kernel execution generated and error getLastCudaError("Kernel execution failed"); // allocate mem for the result on host side float *h_odata = (float *)malloc(mem_size); // copy result from device to host checkCudaErrors(cudaMemcpy(h_odata, d_odata, sizeof(float) * num_threads, cudaMemcpyDeviceToHost)); sdkStopTimer(&timer); printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer)); sdkDeleteTimer(&timer); // compute reference solution float *reference = (float *)malloc(mem_size); computeGold(reference, h_idata, num_threads); // check result if (checkCmdLineFlag(argc, (const char **)argv, "regression")) { // write file for regression test sdkWriteFile("./data/regression.dat", h_odata, num_threads, 0.0f, false); } else { // custom output handling when no regression test running // in this case check if the result is equivalent to the expected solution bTestResult = compareData(reference, h_odata, num_threads, 0.0f, 0.0f); } // cleanup memory free(h_idata); free(h_odata); free(reference); checkCudaErrors(cudaFree(d_idata)); checkCudaErrors(cudaFree(d_odata)); exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE); }