/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* A CUDA program that demonstrates how to compute a stereo disparity map using * SIMD SAD (Sum of Absolute Difference) intrinsics */ // includes, system #include #include #include #include // includes, kernels #include #include "stereoDisparity_kernel.cuh" // includes, project #include // helper for shared that are common to CUDA Samples #include // helper for checking cuda initialization and error checking #include // helper functions for string parsing static const char *sSDKsample = "[stereoDisparity]\0"; int iDivUp(int a, int b) { return ((a % b) != 0) ? (a / b + 1) : (a / b); } //////////////////////////////////////////////////////////////////////////////// // declaration, forward void runTest(int argc, char **argv); //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("%s Starting...\n\n", sSDKsample); runTest(argc, argv); } //////////////////////////////////////////////////////////////////////////////// //! CUDA Sample for calculating depth maps //////////////////////////////////////////////////////////////////////////////// void runTest(int argc, char **argv) { cudaDeviceProp deviceProp; deviceProp.major = 0; deviceProp.minor = 0; int dev = 0; // This will pick the best possible CUDA capable device dev = findCudaDevice(argc, (const char **)argv); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev)); // Statistics about the GPU device printf( "> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); StopWatchInterface *timer; sdkCreateTimer(&timer); // Search parameters int minDisp = -16; int maxDisp = 0; // Load image data // allocate mem for the images on host side // initialize pointers to NULL to request lib call to allocate as needed // PPM images are loaded into 4 byte/pixel memory (RGBX) unsigned char *h_img0 = NULL; unsigned char *h_img1 = NULL; unsigned int w, h; char *fname0 = sdkFindFilePath("stereo.im0.640x533.ppm", argv[0]); char *fname1 = sdkFindFilePath("stereo.im1.640x533.ppm", argv[0]); printf("Loaded <%s> as image 0\n", fname0); if (!sdkLoadPPM4ub(fname0, &h_img0, &w, &h)) { fprintf(stderr, "Failed to load <%s>\n", fname0); } printf("Loaded <%s> as image 1\n", fname1); if (!sdkLoadPPM4ub(fname1, &h_img1, &w, &h)) { fprintf(stderr, "Failed to load <%s>\n", fname1); } dim3 numThreads = dim3(blockSize_x, blockSize_y, 1); dim3 numBlocks = dim3(iDivUp(w, numThreads.x), iDivUp(h, numThreads.y)); unsigned int numData = w * h; unsigned int memSize = sizeof(int) * numData; // allocate mem for the result on host side unsigned int *h_odata = (unsigned int *)malloc(memSize); // initialize the memory for (unsigned int i = 0; i < numData; i++) h_odata[i] = 0; // allocate device memory for result unsigned int *d_odata, *d_img0, *d_img1; checkCudaErrors(cudaMalloc((void **)&d_odata, memSize)); checkCudaErrors(cudaMalloc((void **)&d_img0, memSize)); checkCudaErrors(cudaMalloc((void **)&d_img1, memSize)); // copy host memory to device to initialize to zeros checkCudaErrors(cudaMemcpy(d_img0, h_img0, memSize, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_img1, h_img1, memSize, cudaMemcpyHostToDevice)); checkCudaErrors( cudaMemcpy(d_odata, h_odata, memSize, cudaMemcpyHostToDevice)); cudaChannelFormatDesc ca_desc0 = cudaCreateChannelDesc(); cudaChannelFormatDesc ca_desc1 = cudaCreateChannelDesc(); cudaTextureObject_t tex2Dleft, tex2Dright; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypePitch2D; texRes.res.pitch2D.devPtr = d_img0; texRes.res.pitch2D.desc = ca_desc0; texRes.res.pitch2D.width = w; texRes.res.pitch2D.height = h; texRes.res.pitch2D.pitchInBytes = w * 4; cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModePoint; texDescr.addressMode[0] = cudaAddressModeClamp; texDescr.addressMode[1] = cudaAddressModeClamp; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&tex2Dleft, &texRes, &texDescr, NULL)); memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypePitch2D; texRes.res.pitch2D.devPtr = d_img1; texRes.res.pitch2D.desc = ca_desc1; texRes.res.pitch2D.width = w; texRes.res.pitch2D.height = h; texRes.res.pitch2D.pitchInBytes = w * 4; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModePoint; texDescr.addressMode[0] = cudaAddressModeClamp; texDescr.addressMode[1] = cudaAddressModeClamp; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&tex2Dright, &texRes, &texDescr, NULL)); // First run the warmup kernel (which we'll use to get the GPU in the correct // max power state stereoDisparityKernel<<>>( d_img0, d_img1, d_odata, w, h, minDisp, maxDisp, tex2Dleft, tex2Dright); cudaDeviceSynchronize(); // Allocate CUDA events that we'll use for timing cudaEvent_t start, stop; checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&stop)); printf("Launching CUDA stereoDisparityKernel()\n"); // Record the start event checkCudaErrors(cudaEventRecord(start, NULL)); // launch the stereoDisparity kernel stereoDisparityKernel<<>>( d_img0, d_img1, d_odata, w, h, minDisp, maxDisp, tex2Dleft, tex2Dright); // Record the stop event checkCudaErrors(cudaEventRecord(stop, NULL)); // Wait for the stop event to complete checkCudaErrors(cudaEventSynchronize(stop)); // Check to make sure the kernel didn't fail getLastCudaError("Kernel execution failed"); float msecTotal = 0.0f; checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop)); // Copy result from device to host for verification checkCudaErrors( cudaMemcpy(h_odata, d_odata, memSize, cudaMemcpyDeviceToHost)); printf("Input Size [%dx%d], ", w, h); printf("Kernel size [%dx%d], ", (2 * RAD + 1), (2 * RAD + 1)); printf("Disparities [%d:%d]\n", minDisp, maxDisp); printf("GPU processing time : %.4f (ms)\n", msecTotal); printf("Pixel throughput : %.3f Mpixels/sec\n", ((float)(w * h * 1000.f) / msecTotal) / 1000000); // calculate sum of resultant GPU image unsigned int checkSum = 0; for (unsigned int i = 0; i < w * h; i++) { checkSum += h_odata[i]; } printf("GPU Checksum = %u, ", checkSum); // write out the resulting disparity image. unsigned char *dispOut = (unsigned char *)malloc(numData); int mult = 20; const char *fnameOut = "output_GPU.pgm"; for (unsigned int i = 0; i < numData; i++) { dispOut[i] = (int)h_odata[i] * mult; } printf("GPU image: <%s>\n", fnameOut); sdkSavePGM(fnameOut, dispOut, w, h); // compute reference solution printf("Computing CPU reference...\n"); cpu_gold_stereo((unsigned int *)h_img0, (unsigned int *)h_img1, (unsigned int *)h_odata, w, h, minDisp, maxDisp); unsigned int cpuCheckSum = 0; for (unsigned int i = 0; i < w * h; i++) { cpuCheckSum += h_odata[i]; } printf("CPU Checksum = %u, ", cpuCheckSum); const char *cpuFnameOut = "output_CPU.pgm"; for (unsigned int i = 0; i < numData; i++) { dispOut[i] = (int)h_odata[i] * mult; } printf("CPU image: <%s>\n", cpuFnameOut); sdkSavePGM(cpuFnameOut, dispOut, w, h); // cleanup memory checkCudaErrors(cudaFree(d_odata)); checkCudaErrors(cudaFree(d_img0)); checkCudaErrors(cudaFree(d_img1)); if (h_odata != NULL) free(h_odata); if (h_img0 != NULL) free(h_img0); if (h_img1 != NULL) free(h_img1); if (dispOut != NULL) free(dispOut); sdkDeleteTimer(&timer); exit((checkSum == cpuCheckSum) ? EXIT_SUCCESS : EXIT_FAILURE); }