/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include // helper functions for CUDA error check const int manualBlockSize = 32; //////////////////////////////////////////////////////////////////////////////// // Test kernel // // This kernel squares each array element. Each thread addresses // himself with threadIdx and blockIdx, so that it can handle any // execution configuration, including anything the launch configurator // API suggests. //////////////////////////////////////////////////////////////////////////////// __global__ void square(int *array, int arrayCount) { extern __shared__ int dynamicSmem[]; int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < arrayCount) { array[idx] *= array[idx]; } } //////////////////////////////////////////////////////////////////////////////// // Potential occupancy calculator // // The potential occupancy is calculated according to the kernel and // execution configuration the user desires. Occupancy is defined in // terms of active blocks per multiprocessor, and the user can convert // it to other metrics. // // This wrapper routine computes the occupancy of kernel, and reports // it in terms of active warps / maximum warps per SM. //////////////////////////////////////////////////////////////////////////////// static double reportPotentialOccupancy(void *kernel, int blockSize, size_t dynamicSMem) { int device; cudaDeviceProp prop; int numBlocks; int activeWarps; int maxWarps; double occupancy; checkCudaErrors(cudaGetDevice(&device)); checkCudaErrors(cudaGetDeviceProperties(&prop, device)); checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &numBlocks, kernel, blockSize, dynamicSMem)); activeWarps = numBlocks * blockSize / prop.warpSize; maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize; occupancy = (double)activeWarps / maxWarps; return occupancy; } //////////////////////////////////////////////////////////////////////////////// // Occupancy-based launch configurator // // The launch configurator, cudaOccupancyMaxPotentialBlockSize and // cudaOccupancyMaxPotentialBlockSizeVariableSMem, suggests a block // size that achieves the best theoretical occupancy. It also returns // the minimum number of blocks needed to achieve the occupancy on the // whole device. // // This launch configurator is purely occupancy-based. It doesn't // translate directly to performance, but the suggestion should // nevertheless be a good starting point for further optimizations. // // This function configures the launch based on the "automatic" // argument, records the runtime, and reports occupancy and runtime. //////////////////////////////////////////////////////////////////////////////// static int launchConfig(int *array, int arrayCount, bool automatic) { int blockSize; int minGridSize; int gridSize; size_t dynamicSMemUsage = 0; cudaEvent_t start; cudaEvent_t end; float elapsedTime; double potentialOccupancy; checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&end)); if (automatic) { checkCudaErrors(cudaOccupancyMaxPotentialBlockSize( &minGridSize, &blockSize, (void *)square, dynamicSMemUsage, arrayCount)); std::cout << "Suggested block size: " << blockSize << std::endl << "Minimum grid size for maximum occupancy: " << minGridSize << std::endl; } else { // This block size is too small. Given limited number of // active blocks per multiprocessor, the number of active // threads will be limited, and thus unable to achieve maximum // occupancy. // blockSize = manualBlockSize; } // Round up // gridSize = (arrayCount + blockSize - 1) / blockSize; // Launch and profile // checkCudaErrors(cudaEventRecord(start)); square<<>>(array, arrayCount); checkCudaErrors(cudaEventRecord(end)); checkCudaErrors(cudaDeviceSynchronize()); // Calculate occupancy // potentialOccupancy = reportPotentialOccupancy((void *)square, blockSize, dynamicSMemUsage); std::cout << "Potential occupancy: " << potentialOccupancy * 100 << "%" << std::endl; // Report elapsed time // checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, end)); std::cout << "Elapsed time: " << elapsedTime << "ms" << std::endl; return 0; } //////////////////////////////////////////////////////////////////////////////// // The test // // The test generates an array and squares it with a CUDA kernel, then // verifies the result. //////////////////////////////////////////////////////////////////////////////// static int test(bool automaticLaunchConfig, const int count = 1000000) { int *array; int *dArray; int size = count * sizeof(int); array = new int[count]; for (int i = 0; i < count; i += 1) { array[i] = i; } checkCudaErrors(cudaMalloc(&dArray, size)); checkCudaErrors(cudaMemcpy(dArray, array, size, cudaMemcpyHostToDevice)); for (int i = 0; i < count; i += 1) { array[i] = 0; } launchConfig(dArray, count, automaticLaunchConfig); checkCudaErrors(cudaMemcpy(array, dArray, size, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaFree(dArray)); // Verify the return data // for (int i = 0; i < count; i += 1) { if (array[i] != i * i) { std::cout << "element " << i << " expected " << i * i << " actual " << array[i] << std::endl; return 1; } } delete[] array; return 0; } //////////////////////////////////////////////////////////////////////////////// // Sample Main // // The sample runs the test with manually configured launch and // automatically configured launch, and reports the occupancy and // performance. //////////////////////////////////////////////////////////////////////////////// int main() { int status; std::cout << "starting Simple Occupancy" << std::endl << std::endl; std::cout << "[ Manual configuration with " << manualBlockSize << " threads per block ]" << std::endl; status = test(false); if (status) { std::cerr << "Test failed\n" << std::endl; return -1; } std::cout << std::endl; std::cout << "[ Automatic, occupancy-based configuration ]" << std::endl; status = test(true); if (status) { std::cerr << "Test failed\n" << std::endl; return -1; } std::cout << std::endl; std::cout << "Test PASSED\n" << std::endl; return 0; }